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CHAPTER.1. INTRODUCTION 

The purpose of this research is to build a model of decision-making 

behavior in the soybean market. The decision rules are derived from a 

model of dynamic optimization under uncertainty, which representative 

soybean producers (farmers) and soybean processors have to solve. 

A representative soybean producer has to make a decision as to how 

many acres of soybeans to plant before the price of soybeans for the new 

crop year is known. A decision also has to be made as to the inventory 

level of beans to be held on-farm at the end of each quarter to meet 

demand for feed, seed and for speculation. A representative processor has 

to make decisions as to the quantity of beans to crush into meal and oil 

to meet demand for meal and oil and the inventory level of beans to hold 

at the end of each quarter for transaction in the following quarter and 

for speculation. Both groups have to make predictions concerning the 

prices received for output and the prices paid for inputs. 

The decision rules derived from the optimization process depend upon, 

among other things, future prices of beans. This research explores three 

regimes of price expectations. They are: 

1. rational expectations; 

2. adaptive expectations; and, 

3. cash-futures price expectations. 

Rational expectations require economic agents to have a structural 

model and to utilize all available information. This information forms an 

agent's constraint set. An agent's observed behavior will change if the 
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constraints change. The constraints include the laws of motion that 

describe the exogenous stochastic variables, such as prices paid for input 

factors, innovation, government policy variables and other related 

variables. Changes in agents' perceptions of the laws of motion will 

change their decision rules on choice variables. 

Expectations are subjective, personal and not easily measured. 

Econometricians have used distributed lag procedures in attempting to 

capture expectations. Use of a lag distribution implies that an agent's 

best judgement about the future is captured in historical data; or it can 

be said that the future behaves like the past. In general, this approach 

to expectations performs well for the sample period; however, questions 

arise when one tries to use it to make forecasts beyond the sample period 

(ex ante forecasts). If the structure of the economy changes, econometri-

cians cannat depict these changes in distributed lag models. 

Rational expectations are an alternative. Formulation and estimation 

of the rational-expectations model are time consuming and costly. One has 

to make a trade-off between accuracy and cost. Many economists have 

suggested that due to the high cost of gathering and processing informa­

tion, it is "economically rational expectations" to use adaptive expecta­

tions or distributed lag expectations. Thus, an adaptive expectations in 

which future prices being functions of lagged prices is the second model 

to be investigated in this research. 

The other alternative is to make use of the futures market institu­

tion. It is generally believed that the price of the nearest futures 
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contract of a commodity is an unbiased estimate of the cash price at the 

maturity date of the contract. Some economists have used prices of 

contracts that mature at harvest time to forecast the cash price at 

harvest, arguing that futures prices fully reflect the information needed 

to formulate price expectations. If the futures prices are an unbiased 

estimate of the expected cash prices, it is, in fact, rational expecta­

tions as well. 

The plan of this research is to briefly explain the nature of the 

soybean market, its products, and their price variability in Chapter two. 

Chapter three surveys theories and concepts of price expectations which 

will be used throughout this study. Formulation of the soybean model is 

in Chapter four, where three alternative models are built based upon 

different price expectation regimes. Though all three models have the 

same structure and objective functions, the way agents form their expecta­

tions differ, resulting in a different set of decision rules for each 

price-expectation regime. Chapter five presents the results of Granger 

(19691? causality tests and estimation of the model. Fuller's (1976) 

methodology on searching for a stationary series is extensively utilized. 

Most of the estimations are on the time domain except in some parts where 

the frequency domain seems appropriate. Estimation of the model under the 

three price-expectation regimes is reported. Chapter six contains the 

results of dynamic simulation of the Quasi-Rational model and suggestions 

for further research. 
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CHAPTER 2. THE STRUCTURE OF THE SOYBEAN MARKET 

Soybeans have been known for a thousand years as a food crop in Asia, 

particularly China. In the United States, soybean production began to 

expand significantly in the 1940s (Figure 2.1). This expansion was the 

result of a high U.S. tariff against imported tropical oil seeds, expansion 

of livestock production after World War II, government help, and achieve­

ment in research efforts directed toward increasing the uses of soybeans. 

Soybean meal, one of its two main products, is a high protein feed for 

poultry and livestock. Soybean oil, the other main product, is a major oil 

used in household products such as margarine, cooking oils, and salad oils. 

Soybean oil also has potential to be a substitute for diesel fuel (Levins 

and Meyers, 1981). Figure 2.2 illustrates the utilization of soybeans. 

During the crop year, farmers may sell beans or hold them in on-farm 

storage. Over fifty percent of beans sold go to the processing industry; 

the rest are exported and/or held in off-farm inventory. 

Production of Soybeans 

The crop year (marketing year) for U.S. soybean production is 

September to August. Farmers make production decisions and plant soybeans 

in the third quarter of the crop year (March-May). Acreage planted in 

soybeans depends upon, among other things, the price farmers expect to 

receive (P^) when new production is realized. Heady and Rao (1967) studied 

an acreage response function for soybeans and found that the price ratio of 

soybeans to com and the yield ratios of soybean-oats and soybean-corn are 
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significant explanatory variables. They also found that July rainfall is 

significant for soybean production. Houck, Ryan and Subotnik (1972) 

estimated acreage harvested for U.S. major soybean-producing regions as a 

function of, among other things, the expected prices of soybeans and its 

competing commodities. They used one-year lags of actual prices as proxy 

variables for expected prices. Meyers and Hacklander (1979) included price 

ratios of soybean-corn, soybean-cotton and the ratio of corn-soybean price 

support in their acreage-planted equation for next year's crop. 

Acreage planted is a decision rule to be derived from the optimal 

behavior presented in Chapter four. Soybean production is approximately 

obtained from a technical relationship of the multiplication of soybean 

yield per harvested acre by acres planted and an adjustment factor. The 

other important decision made by farmers is the amount of soybean inventory 

to hold on-farm. Most of the literature has neglected this issue. The 

reason is that on-farm inventory accounted for only a small portion of 

total inventory in the past. Although the ending year soybean inventory 

on-farm is small, the figures are quite different during the year, 

especially from quarter to quarter (Figure 2.3). The movement of soybean 

inventory on-farm displays strong seasonality. On an average, during 1958 

through 1979 farmers held 198.0 million bushels of beans on-farm, although 

the minimum and maximum level ranged from zero to 893 million bushesl. It 

is also significant that the mean level has moved up to 305 million bushels 

during the 1970s. The decision behavior on holding beans on-farm is 
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derived in Chapter four. The results from this investigation can be 

compared to the behavior of soybean processors in holding beans off-farm. 

The Soybean Processing Industry 

The soybean processing industry became large and complex after 

World War II. As shown in Figure 2.2, the two main products of soybeans 

are soybean meal and oil. Both of these products are important in their 

own way. On the average, 10.7 lbs. of oil and 48 lbs. of meal can be 

extracted from one bushel of beans. Oil yield fluctuates moderately from 

year to year due to the oil content of beans, which depends mainly upon 

weather. Meal yield is relatively stable. Soybean processors demand an 

even flow of beans to supply their crushing facilities. In general, 

processors will hold a large amount of beans during the immediate post-

harvest period (Figure 2.4). A peak in processing generally occurs in 

November and December, when there is a large flow of beans from farms. 

Thus, soybean processors have to make decisions concerning the quantity of 

beans to crush in order to supply current meal and oil consumption and the 

quantity of beans to hold in inventory in order to guarantee adequate 

supply of beans for crushing throughout the year. As shown in Table 2.1, 

about half of annual soybean production is crushed. The remaining portion 

is either exported or held in inventory. The demand for soybean crush 

depends upon soybean price, value of crushing products, and crushing 

capacity (Meyers and Hacklander, 1979). In this research, soybean crush 

and holding inventory of beans off-farm are decision rules which a 

representative soybean processor has to solve. 
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Table 2.1. Soybeans, soymeal and soyoil; supply, disappearance 
and their distributions in marketing year 1979/80 and 
1980/81 

1979/80 1980/81 Units 

Soybeans 
Production 
Beginning stocks 
Ending stocks 
Crushing 
Exports 
Feed, seed 
Average farm price 

Mil. bu. 

$/bu. 

2,268 
174 
359 

1,123 
875 
68 

6 ,  28 

1,792 
359 
320 

1,020 
724 

66 
7, 57 

Soybean meal 
Production 
Beginning stk. 
Domestic disappearance 
(include shipments) 
Exports 
Ending stk. 
Decatur price 

1000 s. tons 
M 

$/ton 

27.105 
267 

19,215 
7,932 

226 
181.9 

24,312 
226 

17,597 
6,778 
163 
218.18 

Soybean oil 
Production Mil. lb. 
Beginning stk. 
Ending stk. 
Domestic disappearance 
(include shipments to 
U.S. territories 
Exports 
(exclude shipments) Mil. lb. 
Decatur price ç/lb. 

12,105 
776 

1,210 

8,981 

2,690 
24.3 

11,270 
1,210 
1,736 

9,115 

1,629 
22.7 
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Soybean Market, Its Channels and Its Price 

After harvest, farmers may sell their beans or hold them on the farm. 

In general, most beans are moved to local elevators. is the price 

farmers receive from local elevators, who, in turn, act as arbitragers in 

handling beans to soybean processors, exporters or larger elevators. 

Elevators take advantage of the difference between soybean price received 

by farmers (P^) and wholesale price of beans (PS^), as showing in 

Figure 2.5. In this research we use the Decatur, Illinois, price to repre­

sent the U.S. wholesale price for soybeans. Figure 2.6 illustrates the 

relationship between soybeans and their products. Soybean meal and soybean 

oil quantities are shown in beans equivalent. Soybeans, soybean meal, and 

soybean oil markets are shown in panels (a)-(d), (e)-(h) and (i)-(l) 

respectively. Given demand for soybean crush, exports, and inventories, we 

can derive total demand by summing them up. Total demand and supply of 

beans will determine the price of beans (PS). At a quantity of soybean 

crush, given a price of beans (PS), total production of meal and oil are 

determined. Given domestic demand, export demand and inventories for meal 

and oil, the prices of soybean meal and soybean oil are determined. The 

demand for soybeans crushed, inventories and acreage planted are derived 

from optimization procedures which will be described in Chapter four. 

Exports are exogenous to this study. The total demand for beans and supply 

of beans thus in turn would determine the price of beans. By keeping the 

model manageable and simple, some insights may be drawn from this study. 
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CHAPTER 3. THEORETICAL SURVEY ON THE ECONOMICS OF EXPECTATIONS 

As Hayek (1945) said, "...the problem of a rational economic order 

is determined precisely by the fact that the knowledge of the circumstance 

of which we must make use never exists in concentrated or integrated form, 

but solely as the dispersed bits of incomplete and frequently contradictory 

knowledge which all the separate individuals possess." The economic 

problem is a problem of how to secure the best use of resources. It is a 

problem of the utilization of knowledge. Economists are interested in 

expectations — what kind of information is used and how it is put together 

to make predictions about the future. Rational expectations in the sense 

of Muth (1961) states that economic agents form their expectations as if 

they know the process which will generate the actual outcomes. Or we can 

say that people's subjective probability distributions describing future 

outcomes are identical to the corresponding objective probability distribu­

tion conditional on the true model of the economy. Descriptively, the 

expectations which are formed to predict future events will be the same as 

the predictions of the relevant economic theory. Economic agents have 

perceptions that their forecasts will be correct. What is missing here is 

that this hypothesis does not say how economic agents derive the knowledge 

which they would use to formulate expectations. To integrate the learning 

process or information formation into rational expectations is a challeng­

ing task. As Rawls (1971) said, "...the rationality of a person's choice 

does not depend upon how much he knows, but only upon how well he reasons 

from whatever information he has, however incomplete. Our decision is 
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perfectly rational provided that we face up to our circumstances and do the 

best we can." Thus, for Rawls, "rational expectations" means economic 

agents use optimally whatever information is available. 

Rational expectations analysis has played a crucial role in recent 

research in stochastic dynamics and control. In contrast to rational 

expectations, adaptive expectations is based upon the idea that the 

expected value of a variable is a fixed weighted average of past observa­

tions of that variable. The forecasts under an adaptive model assume that 

the value of a variable will behave in the future as it did in the past. 

This assumption is rigid, and it does not reflect any changes which may 

occur. Rational expectations, however, are more responsive to changes in 

economic variables. Even though the idea of rational expectations is more 

conceptually sound, a drawback still exists in the formulation and estima­

tion of a rational expectations model. It is a challenging area of 

research. 

In this section, we present a selective survey of research on anticipa­

tory commodity prices (especially for stored commodities), the rational 

expectations hypothesis, the adaptive price expectations hypothesis, and 

the cash-future price relationship. Finally, the causality hypothesis is 

summarized. 

Anticipatory Commodity Prices 

The work of Working (1958) improved understanding of the nature of 

commodity price fluctuation. He explained that if prices are formed in a 

free market, they will be formed under the influence of expectations. 

Commodities, such as soybeans, are produced once a season. Consumers are 
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forced to anticipate their wants during all the future months of the 

season, to guess at the prices which they will later have to pay for their 

consumptions, and to forecast income they will have during the season. 

Assuming supply is fixed, expectations are involved only in the formation 

of demand. Working's concept of demand is not a schedule of amounts that 

are bought during any particular interval of time, but is a schedule of 

amounts that are held at a particular time. The holding schedule is based 

on expectations concerning consumption demand and the existing supply 

conditions. The model Working proposes has the following characteristic: 

(1) It assumes prices to be formed through the medium of human 

decision, on the basis of information realistically available to traders. 

(2) It assumes the existence of conditions, within and around the 

market, such as have actually prevailed in the world during recent years. 

(3) It assumes there are a large number of traders. 

Information available to traders is sometimes incomplete, false or 

erroneous. Nearly all of the traders are persons of rather exceptional 

trading ability and judgement, emotionally stable, with knowledge and 

skill, and they keep informed on their business. Thus, traders must seek 

information to guide their actions in price formation. They seek informa­

tion on the prospective supplies, consumption, changes in business condi­

tions, and in the general price level. They may seek to obtain information 

in advance of routine publication of the information. 

Selective Review of Rational Expectations 

Economic agents, in general, react to current and anticipated future 

information. However, it is controversial how their anticipations are 
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formed. Muth (1961) bases his theory of rational expectations on three 

things, "...(1) Information is scarce, and the economic system generally 

does not waste it; (2) The way expectations are formed depends specifically 

on the structure of the relevant system describing the economy; and, (3) A 

'public prediction,' in the sense of Grunberg and Modigliani..., will have 

no substantial effect on the operation of the economic system (unless it 

is based on inside information)." Thus, expectations in the sense of Muth 

are based upon costless information. In order to derive the price 

expected to prevail at the t^^ period on the basis of information through 

th s 
(t-l) period (^_^P^), Muth assumes "...(1) The random disturbances are 

normally distributed; (2) Certainty equivalents exist for the variables to 

be predicted; and, (3) The equations of the system, including the expecta­

tions formulas, are linear." 

If the expectations' which are formed to predict future events are the 

same as the predictions of relevant economic theory, then these expecta­

tions are rational. Mathematically, the expected value of market price at 

time t equals the market price expected to prevail during the t^^ period on 

the basis of information available at time t-l, or, 

where ^ = expected value operator based on information available through 

the (t-l)*"^ period, 

= the market price at t, 

= the expected price to prevail at t on the basis of information 

through t-l. 

1 = information set available at time t-l. 
t-l 

The following is Muth's (1961) model: 
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Demand: =-6P^, g > 0 

Supply: Yj. = Y > 0 ^ (3.2) 

Market Clearing: 

where = the amount consumed, 

Yj. = units produced in a period lasting as long as the 

production lag, and, 

= stochastic disturbance, e.g. variations in yields due to 

weather. 

All variables are deviations from equilibrium values. Solving (3.2) 

for P^, we obtain: 

^ - 6 - i "t 

If there is no serial correlation of vi^, and 

E^_^(p^) = 0, then we obtain 

Vl«t' - - ̂  (3-4) 

Using rational expectations (3.1), then ~ 0, or, the price expected 

to prevail at t equals the equilibrium price. 

In the case of serial correlation in Muth assumes that has the 

following representation: 

"t " 

and E(Gj) = 0 E(e^ej) = • 

r 2 
a if i=j 

0 if i^j 

Thus, E(vi ) = S w.s . where E(e ) = 0. Taking expected values of (3.3) 
^ i=l ^ c-i 

conditioning on we get 
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t-l^t = - t-i (3-6) 

Substituting (3.5) and (3.6) into (3.3), we get 

P. = 
t ' * l  ( ^ )  -  6  

(̂ ) " ? "o'' ' 8 

• [b (̂ ) - e] - T "ô t 

• s (̂  " ̂ ) lijVt-l - B "o't 

^ - (vîb) JiVt-1 - î Vt »•" 

or we can write as; 

't • (3-8) 

if the following conditions hold, 

W = - % w and 
o 3 o 

"i " ~ "l' i - 1, 2, 3... 

Thus, the expected price under this hypothesis depends upon the restric­

tions imposed on the parameters of the structural model and the stochastic 

term. Muth also proves that we can write ^_^P^ as the following: 
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t-i?: - (3-10) 

However, for (3.9) to equal (3.10), the following restrictions are needed: 

for i = 1, 2, 3... 

The exact form of depends upon 0, y and w^. If we assume that all 

w^ = 1 for i = 0, 1, 2..., then 

Wq = -1/3 and = -1/(3+^) and is : 

À#)' 
( T i l l ' «  

The coefficient of (3.12) is a function of parameters 3 and y in the 

structural model. We will see later that the appearance of (3.12) is 

similar to the adaptive expectation formation, but the interpretation of 

the two hypotheses are quite different. 

Policy Implication of the Rational Expectation Hypothesis 

Robert Lucas (1976) has pointed out that most econometric models which 

f)erform well in short-run forecasting provide no useful information as to 

the actual consequences of alternative economic policies. This argument is 

based upon the difference between the prior "true" structure and the."true" 

structure after policy changes. Parameters in most econometric models are 

assumed to be invariant with respect to changes in economic policy. This 

may be an erroneous assumption. 
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Consider an economy which is characterized by the equation 

Vl = ^<^t' ̂ t' ^t^ (3.13) 

where X^, 0 and are a vector of state variables, exogenous 

variables, parameters, and random shocks, respectively. In econometric 

practices, one would estimate the values of the vector 0, with F being 

specified in advance. In fact, there is no presumption that (F, 0) will 

be easy to discover. Even when 0 is approximately known by estimation, it 

is unlikely that it will remain stable under arbitrary change in such 

as a change in government policy variables. This is known as a case of 

"parametric drift." A well-known example is the Phillips Curve argument. 

If the changes in 0 induced by policy changes is slow, then one may get 

good forecasts for a few periods; but, this is certainly too much to ask 

for in a dynamic society like the United States. If X^ = G(Y^, a, n^) 

where G is known, a is a fixed parameter vector and rij. is a vector of 

shocks, then 0 also is a function of a, i.e., 0(a), which econometricians 

have to estimate. 

A change in a government policy is viewed as a change in a. Thus, 

a change in a will affect the system through X^ and 0(a). It is clear that 

to forecast the result of structural changes induced by policy changes, one 

must know 0(a). These arguments are crucial to the proposed model under 

the rational expectations hypothesis in Chapter four. The detail of this 

policy implication will be discussed later. 
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Formulating and Estimating Rational Expectations Model 

We now turn to the econometric problems involved in dealing with the 

formulation of the rational expectations model. As mentioned earlier, 

Lucas (1976) has criticized current macroeconometric models for being 

invalid to any policy evaluation regardless of how well they perform over 

the sample period of in ex ante short-run forecasting because they fail to 

take into account how a change in policy affects the structure of the 

models. 

Hansen and Sargent (1980) present a methodology for formulating and 

estimating rational expectations models. They use a simple one-factor 

employment model where a firm chooses a contingency plan for employment 

n^ to maximize its expected present value subject to n^_^. The firm 

maximizes : 

N j 
lim E Z gJ 
N-H» ^ j=o % *t+j " "t+j^"t+j " i l ]  "t+j 

(6/2)(n^+j -

where w^ is the real factor rental rate, and is a random shock to 

(3.14) 

technology which is seen by the firm but unobserved by econometricians. 

Yqj Y2 "S are positive constants, and the discount factor 3 is 

between zero and one. It is assumed that a stochastic process for a^ can 

be discovered by the firm. This assumption is crucial for obtaining the 

decision rule (demand function) of n^.. The firm's decision rule contains 

the future value of the stochastic process w^ which is to be predicted but 
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cannot be controlled. Granger-causality is used in order to search for 

variables which help to predict . That is, any variables in the 

information set 0^ which help to predict w^ must appear in the decision 

rule n^, n^ must fail to Granger-cause w^ for w^ (and other variables 

which Granger-cause w^) to be strictly exogenous to n^. Hansen and 

Sargent derive a closed form for the decision rule n^ in which n^ is a 

function of its own lagged value n^_2, current and (r-1) lagged values of 

Xj. (where x^ is contained within w^ and other variables which Granger-cause 

w^) and current and (q-1) lagged values of a^. 

Xj. and a^ have r^^ and order univariate autoregressive 

representation. The decision rule n^ expresses the restrictions imposed 

across the decision rule and the parameters of the stochastic process for 

Xj. and a^. More clearly, the firm's decision rule for n^ is; 

Ht = Pi"t-1 W(L)X^ + T7(L)a^ (3.15) 

where 

e(L)X|. = (3.16) 

^t = *1*C-1 + "2*t-2 + 

(3.17) 

m(l) , and 
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q-1 
I + Z 
. j=l 

U is a row vector with one being the first element and zero 

otherwise, and 

I is an identity matrix. 

The derivation of equation (3.15) is present in Appendix A. The 

existence of restrictions across parameters in the decision rule for n^ 

and stochastic processes of w^ and a^ are important in the rational 

expectations model, as Lucas (1976) pointed out. 

as a function of current and past X's and a's. Quasi-maximum likelihood 

estimation is used to get asymtotic properties of maximum likelihood 

estimates. 

The soybean model under this rational expectations hypothesis is 

presented in Chapter IV. This model is based upon Muth (1961), Hansen and 

Sargent (1980), and Sargent (1980). 

Taylor (1975) argued that if it takes time for agents to learn the 

exact nature of monetary policy (or any kind of policy), then the rational 

expectations technique might not be relevant for studying the immediate 

effects of a sudden shift in policy. During the transitory period, the 

rational expectations hypothesis is invalid. A learning process is 

To estimate the parameters in the model, Hansen and Sargent solve n^ 

Adaptive Price Expectations 
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necessary. Rational expectations may have advantages for longer time 

horizons. Feige and Pearce (1976) also argue that there is a middle ground 

between autoregressive expectation and rational expectation, a so-called 

"economically rational expectations." Their concept emphasizes that 

economic agents should consider the trade-off between benefits and costs of 

added information when forecasting and anticipating, say, future inflation 

rates. They use nonnegligible cost Information sets which serve as leading 

indicators or information sets which satisfy Granger causality. When the 

costs of gathering and processing information are considered, auto­

regressive expectation or adaptive expectation models may be economically 

as sound as the rational expectation model. 

A distributed lag model has been used to measure expectations for a 

long time. The general model is: 

Pt = ^ Vt-i (3.18) 
1=0 

where p^ = the expected price at time t formed at t-1. 

Economic agents form their expectations and thus make forecasts based 

entirely on the past history of prices. The issues Involved in this 

hypothesis are the number of lags needed, serial correlation and the 

weights (v's) in the model. Distributed lag models which have been used 

in economic literature are static expectations, extrapolatlve expectations 

and adaptive expectations. 
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Static expectations have the form: 

(3.19) 

Economic agents have the perception that the current expected price is the 

same as last period's actual price. It will give good forecasts if the 

price series follows a random walk. 

"The Cobweb Theorem" by Ezekiel (1938) is a famous example of static 

price expectations. The cobweb theorem postulates that anticipated prices 

are current prices at the time of the production decisions. Thus, if a 

decision is made to produce at t-1 for output at t, then the expected 

price in period t-1 for period t, p^, is given by the observed price at 

t-1. 

Another form of price formation is the so-called extrapolative 

expectations. The expected price for period t at period t-1, p®, is: 

P? - + n(P,.i - P,.2) (3.20) 

^ and Pj._2 are observed prices in period t-1 and t-2. n is Metzler's 

coefficient of expectation (Metzler, 1941). This price expectation is the 

modification of the static expectations (3.19). The purpose of (3.20) is 

only to take into consideration the most recent trend in prices. 

Another form of price expectations is the adaptive expectations : 

- K-l  *  - ft-l) (3-21) 

Expectations of price are based upon price expectations in the last period 

and the difference between the actual and the expected price in the last 
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period. The value of "a" represents the perception which economic agents 

believe about the direction of the expected price. The term "a" has been 

known as "the coefficient of expectations." 

Using the lagged operator "L", P® can be written as; 

p® - p 
t 1-gL t-1 

where 3 = (1-a) 

00 . 

Or P® = a Z (1-a) P 0 < a < 1 (3.22) 
i=0 c-i-i 

The price expected to prevail at t, given the history of the market price, 

is the sum of the weighted average of all past prices. 

It is helpful at this point to compare the expected prices P^ in 

(3.12), (3.19), (3.20) and (3.22), as in Table 3.1. 

< - Pt_l  + <-l  = af t - l  

P? - (l-a)P L̂l = aPt_i 

(1 - (l-a)L)P® = aP^_i 

where (1-a) = g or (1-3) = a, then we get 

(1-3L)P® = (l-3)P^_i 
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Table 3.1. Comparison of expected prices 

Expectations 
Derivation from 
structural model 

Static 

Extrapolative 

Adaptive 

Rational 

t-1 

Pt_i + n(Pt-i-Pt-2); 

a Z (l-a)^P ; 0<a<l 
i=0 ^ 

c-j 

no 

no 

no 

yes 

The first three price expectations have not been derived from 

structural models - as in the case of the rational expectations. Though 

the adaptive and rational price expectations have the same appearances, 

they have different interpretations. The coefficient "a" is ad hoc, while 

lip" 
— is tied to economic behavior of the model. The same argument holds 

for "(1-a)" and 
1 + 

Thus, any changes on structural parameters 

"3" and "y" will certainly affect p^ under rational expectations. Such 

changes on "g" and "y" have no effect on p^ under adaptive expectations. 
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Cash-Futures Price Expectations 

The futures market is an organized market which facilitates trade 

among traders. It is used for hedging and speculating. The futures market 

performs various functions, such as providing price signals to participants 

concerning allocation of input use, production and consumption. If futures 

prices (near and/or more distant futures prices) respond to changes in 

market expectations, such as anticipated cash prices, then one may use 

(near) futures prices as a predictor for anticipated cash prices. 

One may ask questions such as why cash and futures prices should be 

related, or, if they are related, what is the nature of their relation­

ships? Had the correlation between them been small, hedging would be 

infeasible. 

An expectations hypothesis 

One of Samuelson's (1965) hypotheses on anticipated prices is: 

^ 

where y„ is a futures price quote at t for delivery time at 0, and P. is 
o * L * y 

the cash price to prevail at time of delivery 0 . Equation (3.23) says that 

the futures price quotes at t for delivery time at 0 is the expected cash 

price to prevail at time 0, given current and historical cash prices. One 

of the problems facing many researchers is which futures contracts should 

be used. Tomek and Gray (1970) have tested whether future price quotes at 

the spring time (April) for the harvest time (November) contract are a 

reasonable forecast for cash price at harvest time for corn and soybeans. 
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The equation they test is: 

= a + bPj (3.24) 

where = cash price at harvest, and 

Pg = spring-time futures price for the harvest time contract. 

They statistically accept the hypothesis that "a" and "b" are zero and one, 

respectively. The acceptance of Tomek and Gray's hypothesis implies that 

there is a strong correlation between P^ and P^ and that P^ must lead (in 

a statistical sense) P^. Labys and Granger (1970, pp. 108-109) perform 

lead-lag tests for many commodities and use various contract futures 

prices. They found no strong evidence for the existence of such leads. 

They conclude that futures prices will not be useful for predicting cash 

prices. In the proposed model in Chapter IV, we would hypothesize that 

(3.23) is true. 

Causality Hypothesis 

Granger (1969) has investigated causality between stochastic variables 

X and Y in a testable fashion. The basic assumption is that the future 

cannot cause the past. If U is,all of the information in the universe 

accumulated up to time t-1 and (U-Y) is all information apart from the 

specified series Y, then we can define causality as the following: 

Y is causing X, denoted by Y ^ X, if 

a^(x |U) < a^(x | i j ' -Y)  (3 .25)  

2 
where a (X/U) is the variance of the forecast of X given all information in 

U. Equation (3.25) says we are better able to predict X using all 
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available information than if the information apart from Y(U-Y) has been 

used. This definition is different from feedback, instantaneous causality 

and causality lag. Feedback is said to occur when Y is causing X and X is 

causing Y, denoted by Y-w- X. Granger uses the following definition for 

feedback; 

where the one line above U or U-Y refers to past information excluding 

present. Instantaneous causality is defined as: 

where two lines above Y refer to present and past history values of Y. 

Equation (3.27) says we are better able to predict X if the present value 

of Y is included. The last type of causality is the causality lag. Its 

definition is the following: 

at least lag m of Y is required for Y X. Knowing the lagged Y which is 

less than m will be no help in improving the prediction of X. 

When some of the information in set U is irrelevant, we can ignore it 

and use only those relevant. For example, if the only relevant information 

are lagged values of X and Y, then Y is said to cause X in Granger sense 

(3.26) 

Y X if; o^(X| U,Y) < a^(X| U) (3 .27)  

Y X if; a^(x| U - Y(k)) < o^(x| U - Y(k+1)) (3.28) 

if: 

a^(x| X,Y) < a^(xl X) (3 .29)  
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However, spurious causality could arise if we exclude relevant information 

from the information set. For our purpose, we will use the linear 

causality in mean with respect to a specified information set (Sargent, 

1979). The following are examples of linear causality: 

m m 
Z 
j=l 

+ Z 
j=l ̂ j^t-j + Cj.,  

m m 
Z 
j=l 

+ E 
j=l '^j^t-j 

(3.30) 

where {e^, n^.} is the process of innovations 

or = Xj. - Ê(Xj.jn^_^) and 

nt=Yt-E(YtlVl> 

(3.31) 

and, - (Y^_i, ... X^-l' \-2 ' 

Ê is linear least-squares projection operator. 

The following assumptions are needed: 

i) (Y^, Xj_) is a jointly covariance stationary time series, 

ii) E(e^X^_^) = E(eJ^_.) = E(n^Xy_.) = E(nJ^_.) = 0 for all j > 1. 

The orthogonal condition ii) implies 

f o r  a l l  n o n z e r o  o f  T .  

2 
If Y fails to Granger-cause X, there exists a family of 

2 
Y fails to Granger cause X if coefficient bj for all values of j 

are statistically zero. 
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"t - /., "/t-j + "t »• 

expressing as a one-sided distributed lag of X. This definition will 

be used in Chapter V. 
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CHAPTER 4. THE FORMULATION OF THE SOYBEAN MARKET 

The model presented here is the decision-making behavior of producers 

and consumers in the soybean market. The decision rules - acreage planted, 

on-farm inventory, soybean crush and off-farm inventory — are derived from 

a dynamic and stochastic framework where farmers and processors are assumed 

to maximize the expected present value of their income stream subject to 

dynamic and stochastic technology and their information. The decision 

rules are a function of, among other things, conditional expected future 

prices. Three price expectations are applied - rational, adaptive, and 

cash-futures expectations. 

Under rational expectations, agents are assumed to know the actual 

distributions of exogenous and endogenous variables. Hence, the agents' 

decision rules depend upon the parameters underlying the structure of the 

soybean market and the parameters which characterize exogenous variables. 

Any changes in government policies affect decision rules such that the 

structural equations vary with such policies. Prediction of such policy 

changes requires identification of the structural model. The dynamic 

nature of the soybean market and uncontrollable shocks give rise to 

fluctuations of decision rules. 

There are two sectors - producers and consumers of soybeans. 

Producers decide upon acreage planted to soybeans at time t and decide upon 

the level of inventory to be carried over to the next period. Consumers 

buy soybeans for crushing into soybean meal and soybean oil. They also 

carry soybeans over for future usage and for speculation. 
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Soybean production is assumed to be a function of soybean acreage 

planted (a^), which is a decision variable. Farmers (producers) face 

production costs, which are the direct cost of producing soybeans, adjust­

ment cost of acreage planting and storage cost (including opportunity cost) 

of holding soybeans. The adjustment cost of acreage planting represents 

additional changes in acreage planted from one crop year to the other. The 

adjustment cost is assumed to be a quadratic function, which is necessary 

for a dynamic model. Inventory cost includes the transaction cost of 

storing soybeans and the opportunity cost of lost revenue due to a possible 

change in the price of soybeans. For equilibrium, total demand for 

soybeans, i.e., soybeans bought by processors (crush), exports, change in 

inventory on-farm, and off-farm and change in soybean stock owned by the 

Commodity Credit Cooperation (CCC), must equal production plus' beginning 

stock. 

Soybean meal and oil production are assumed to equal the multiplica­

tion between soybean meal and oil yield and soybean crushed (sc^). 

Equilibrium is also imposed in this market. The cost of producing soybean 

meal and soybean oil is the cost of beans, adjustment cost of crushing and 

inventory cost. The linkage between soybeans and its products is through 

soybean price farmers receive (P^) and the wholesale price (PS^). Price, 

P^, determines farmers' decision to plant soybeans, while PS^ determines 

the demand for crush. The difference between and PS^ reflects the 

margin between these two prices. 
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Model of Soybean Market 

Soybean sector 

The following equations belong to the i^^ farmer at time period t 

where subscript "i" is omitted, and i = 1, 2, 3 ... N. Definitions of all 

variables are reported in Appendix D. Capital letters represent aggregate 

notations, while small letters are for a representative agent. The time 

index "t" in the following structural model refers to quarter. The first 

quarter of the soybean model in this study begins at planting time, in 

contrast to the traditional crop year where the first quarter begins at 

harvest time. The rearrangement is made to simplify the formation of the 

model. The time index "t" takes values at t = 0, 1, 2, ... unless 

stating otherwise. 

Production of soybeans 

sb(t+2) = y a(t) (4.1) 

a(t) takes positive values at t = 0, 4, 8, ... and zero otherwise, sb, 

thus, takes positive values at t+2 = 2, 6, 10 

Soybean sold 

sbs^ = sbb^ + sbx^ (4.2) 

Soybean bought by processor 

sbbj. = sCj. + (sbc^ - sbc^ (4.3) 

Total demand for soybeans 

sbd = sbs. + sbhf. - sbhf. , 
t t t t-JL 

+ sbhc^ - sbhc^ ^ (4.4) 
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Soybean Identity 

sb^ + sbhf^_j, = sbs^ + sbhf^ + sbhc^ - sbhc^_^ (4.5) 

Farm price linkage 

Pj. = ePSj. + ; 0 < e < 1 (4.6) 

Cost of soybean production 

Clj. = al a^ ; t = 0, 4, 8, ...T-4 (4.7) 

where al represents average cost of production per acre. 

Adjustment cost of acreage planted 

C2j. = ~ ®t-4^^ ; t = 0, 4, 8,.. (4.8) 

Inventory holding cost of soybean on-farm 

C3. = d2 sbhf.H- d3(sbhf + ̂(sbhf - sbhf. .)^ (4.9) 
c c 2 , t 2 

Cost of soybean bought 

C4j. = PS J. sbb̂  (4.10) 

Adjustment cost of crushing 

C5j. = £0 sc^ + _^(sc^ - sCj._j)^ (4.11) 

Inventory cost of soybean off-farm 

C6 = £2 sbc^ + ̂(sbc - sbc ,)^ (4.12) 
t 2 ^2 

Soybean meal and soybean oil sector 

The following equations belong to processor "j" where the subscript 

"j" is omitted, and j = 1, 2, 3, ... K. 
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Soybean meal production 

sm^ = somsc*50*sc^ (4.13)^ 

Soybean oil production 

80^ = soosc*100*scj. (4.14)^ 

Soybean meal identity 

sm^ + smhj._j = smdm^ + smx^ + smh^ = smd^ (4.15) 

Soybean oil identity 

so^ + sohj._j^ = sodm^ + sox^ + soh^ S sod^ (4.16) 

Total demand for soybean meal 

smdj. = mO + ml PM^ + m2 Zl^ + (4.17) 

Total demand for soybean oil 

sod^ =• kO +kl PO^ + k2 Z2^ + (4.18) 

where Zl^ and Z2^ are other variables which represent demand shift. The 

time index "t" in equations (4.4) through (4.18) take values at t = 0, 1, 

2, 3, ... for all variables except sb^. ^2t stochastic errors. 

The Rational Expectations Model of the Soybean Market 

Given the structure of our market in equations (4.1) through (4.18), 

each producer (farmer) and consumer (processor) will maximize the 

expected value of the discounted present value of his (her) income 

stream. 

A representative farmer will maximize: 

The figures 50 and 100 are required to adjust for units. 
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V(0) = E_ 2 b*" (P(t) sbs(t) - al a(t) - dl(a(t)-a(t-4))^ 
t=0 \ 2 . 

- d2 sbhf(t) -d3sbhf(t)^ - d4(sbhf(t)-3bhf(t-l))^] 
2 2 / 

(4.19) 

where "b" is a discount factor which is greater than zero and less than 

one. The index "t" takes values at t = 0, 1, 2, ... for all variables 

except a(t) which t = 0, 4, 8, .... Equation (4.19) is maximized over 

{a^ } and {sbhfj. }, given their initial values a(t-j), sbhf(t-j), and 

information accumulated up to time t (J2(t-1)), where 

O(t-l) = {a(t-l), a(t-2), ... sbhf(t-l), sbhf(t-2), ... 

P(t-l), P(t-2), ... PS(t-l), PS(t-2), ... sc(t-l), 

sc(t-2), ... sbc(t-l), sbc(t-2), ... PM(t-l), 

PMCt-2), ... PO(t-l), P0(t-2), ... Zl(t-l), Zl(t-2), 

... Z2(,t-1), Z2(t-2), ... } 

Using (4.1) and (4.2), we can write (4.19) as the following; 

V(0) = E Z P(t)(y a(t) + sbhf(t-l) - sbhf(t) 
" t=0 I 

- sbhc(t) + sbhc(t-l)) - ol a(t) - ̂ (a(t) - a(t-4))^ 

\ 
- d2 sbhf(t) - ̂  sbhf(t)^- ̂ (sbhf(t)-sbhf(t-1))^ 

2 2 / 
(4.20) 

Taking the derivative of (4.20) with respect to {a(t) } where t = 0, 4, 8, 

... , we get: 

- b^al - dl b^(a(t)-a(t-4)) + y P(t+2) + b'^'^^dl(a(t+4)-a(t)) = 0 

for t = 0, 4, 8, ... (4.21) 
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Rearranging (4.21), and using the lagged operator "L", we get: 

( 1 - b~^(.l+b^)L^ + ) aCt+4) = (b^dl)"^(al - b^y P(t+2)) 

for t = 0, 4, 8, ... (4.22) 

The transversarity condition of a(t) is: 

lim- {b^'^^dl.(a(T+4)-a(T)) - b^dl(a(T)-a(T-4)) - b'^al + b'^^y P(T+2)}= 0 
T-xo 

(4.23) 

2 
Equation (4.22) can be written as: 

(1 - L^) a(t+4) = (-b"'^L^)"^(l - b^L"'^)"\b^dl)"^Coil - b^y P(t+2)) 

= /(-b^L ^)(b^dl) ̂ I (al - b^y P(t+2)), or 

\(1 - bVS 

a(t+4) = a(t) - ̂  E (b)^^(al - b^y P(t+6+4k) 
dl k=0 

= a(t) -/ al j+ Ib^v\ Z (b)^^ P(t+6+4k) 

\dl-(l-b)/ \dl / k=0 

for t = 0, 4, 8, ... (4.24) 

Equation (4.24) is not yet a decision rule for a(t), because it is a 

function of future prices, which are unknown at the time making planting 

decision. To get the explicit decision rule, we need to write future 

^ (1- b"^(l + b^)L^ + b"\®) = (1 - L4)(l - b'^L^) 

= (1 -L^)(-b~V)(l - bV*^) 
-4 4 

where L a(t) = a(t+4), and L a(t) = a(t-4). 



www.manaraa.com

42 

terms in an observable form. Now, taking the derivative of (4.20) with 

respect to {sbhf }"_Q, we get the following system of Euler equations: 

-b^P(t) + bt+lp(c+i) - b'^d2 - b^dS sbhf(t) 

-b^d4(sbhf(t) - sbhf(t-l)) + b^^^d4(sbhf(t+1) - sbhf(t)) = 0 

for t=0, 1, 2, 3, ... (4.25) 

The transversarity condition for sbhf(t) is: 

lira -b^P(T) + b^'*'^P(T+l) - b^d2 - b'^dS sbhf(T) 
T-xx. 

-b'^d4 (sbhf(T) - sbhf(T-l)) + b'^''"^d4 (sbhf (T+1) - sbhf(T)) = 0 

(4.26) 

1 -Id3 + b"^(l+b)\L + b~^L^ I sbhf(t+1) 

Rearranging (4.25), we get: 

lâl 
[bd4 

= (bd4)"^(P(t) - b P(t+1) + d2) 

= - (bd4)"^(b P(t+1) - P(t) - d2) (4.27) 

for t = 0, 1, 2, 3, ...T-1 

Let pi and p2 be the two distinct roots of (4.27). We can write it as: 

(1 - pi L)(l - p2 L) sbhf (t+1) = -(bd4)"\bP(t+l) - P(t) - d2) (4.28) 

If pi is the smallest root, then we get pi < 1 < ̂  < p2. Also, the 
b 

process P(t) is an exponential order less than 1/b (this concept will be 

used throughout this chapter). Let L ^sbhf(t) = sbhf(t+1), then equation 

(4.28) can be written as: 

(1 - pi L) sbhf(t+1) = (bd4p2L)"^(bP(t+l) - P(t) - d2) , or 

(l-(plb)L"^) 
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sbhf(t+l) = plsbhf(t) +l£j\ï / J, ) ̂ (bP(t+i+2) - P(t+1) - d2) 
\d4/i=0 \ psl 

for t = 0, 1, 2,... (4.29)j 

where pl+p2 = ^ + b ^(1+b) >0 ] 
bd4 I 

plp2 = 1/b J (4.30) 

Equation (4.29) is not yet a decision rule because of the future price 

P(t+i). Before solving for explicit function of a(t+l) and sbhf(t+l), let 

us turn to soybean processors. 

A representative soybean processor maximizes the following 

expression: 

J(0) = Eq 6*^ {PM(t)smd(t) + PO(t) sod(t) - PS(t) sbb(t) 

- gOsc(t)^ - ̂ (sc(t) - sc(t-l))^ 
2 2 

- ̂  sbc(t),^ - ̂ (sbc(t) - sbc(t-l))^} (4.31) 
2 2 

over the processes sc(t) and sbc(t), given all initial information at 

period t (fî(t-l)). Equation (4.31) holds for t = 0, 1, 2, 3, ...T-1. 

Imposing condition (4.15), (4.3), (4.16), and (4.14), we can write 

(4.31) as: 

• 

1 = - (p2L)~^ = - (plb) L ^ 

(1 - p2 L) (1 -(p2L))"^ (1 - (p2L))"l 
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J(P) = E_ Z 5^ jPM(t)Csomsc*sc(t) + smh(t-l)) + PO(t)(soosc* 
t=0 I 

sc(t) + soh(t-l^- PS(t)(sc(t) + 

sbc(t) - sbc(t-l)) - gOsc(t)^ 
2 

- ̂ (sc(t) - sc(t-l))^ 
2 

- ̂  sbc(t)^ - ̂ (sbc(t) - sbc(t-l))^ 1 (4.32)^ 
2 2 

Taking the derivative of equation (4.32) with respect to {sc} , we got 
t=0 

the Euler system 

6^ { PM(t)*somsc + PO(t)*soosc - PS(t) } - 6*" gO sc(t) 

- 6^ gl(sc(t) - sc(t-l)) + gl(sc(t+l) - sc(t)) = 0 (4.33) 

The transversality condition is: , 

lim { 6^(PM(T)*somsc + PO(T)*soosc - PS(T)) 
Tx» 

- ô^gO sc(T)- 6^gl(sc(T)-sc(T-l)) 

+ ô^''"^gl(sc(T+l) - sc(T)) } = 0 (4.34) 

Making use of the lagged operator "L" and rearranging terms, we can 

rewrite equation (4.33) as the following 

Jl - ( 1+ 1/6 + gO/6gl ) L + 1/6 L^jsc(t+1) = - |l/6gljsBCM(t) (4.35) 

^ The figures "50" and "100" in (4.13) and (4.14) are ignored 
for the time being. 
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where SBCM(t) = PM(t)*3omsc + PO(.t)*soosc - PS(t). Using the same 
20 

technique as in (4.28), we can write (4.35) as: 

(1 - M L)(l - XZ L) sc(t+l) = -(6gl)"l SBCM(t) (4.36) 

where XI and \2  are two distinct roots, and XI Is the smallest root. 

Equation (4.36) has the following solution: 

sc(t+l) - Xlsc(t) + U f (1/X2)1 (SBCM(t+i+l)) (4.37) 
gl 1=0 

for t = 0, 1, 2, 

where XI + X2 = (1 + 1/6 + gO/ôgl) 

XI X2 = 1/6 (4.38) 

Taking the derivative of (4.31) with respect to {sbc}°° , we get 
t=0 

g3 (sbcCt+l) - sbc(t)) - 6^g3 (sbc(t) - sbc(t-l)) 

6^ g2 sbcCt) + PS(t+l) - ô'^PS(t) = 0 (4.39) 

and the transversal!ty Is: 

11m { 6^"'"^g3(strc(T+l) - sbc(T)) - ô''^g3(sbc(T) - sbc(T-l)) 
T-X» 

6^g2sbc(T) + s'^'^'^PSd+l) - 6^PS(T)} = 0 (4.40) 

As before, the solution which satisfies the system of Euler equation is: 

sbc(t+l) = 01 sbc(t) + ( 01/g3) Z (l/02)^(ÔPS(t+i+2 
1=0 

- PS(t+i+l)) , for t =0, 1, 2, (4.41) 

where 01+ 02= 1+1 +(g2/g36) 
T 

01 02 = 1/6 r (4.42) 
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Aggregating the Euler equations across individual farmers and 

processors, we get U.S. soybean acreage planted (A^), U.S. soybean 

inventory on-farm (SBHF^), U.S. soybean crush (SC^) and U.S. soybean 

commercial inventory off-farm (SBC^.). By aggregating we imply that the 

agents' behavior in this market are the same, and their perceptions on the 

aggregate law of motion for the exogenous variables are correct. ^ 

For the market to be clear at harvest time (t+2), total demand for 

soybeans must equal total supply of soybeans at a market price at harvest 

time The market clearing condition is: 

SCt^.2 + SBX^^2 + + SBHF^g + SBHC^^^ = SB^^2 + SBC^+i 

+ SBHF^^ 

+ SBHCj.^^ (4.43) 

To get the market price PS^^g which satisfies (4.43), we substitute the 

aggregate Euler equations into (.4.43). The market price PS^^^ is: 

There is no reason to believe that the equilibrium imposed on this 
derivation is efficient. The equilibria depend very much on the 
expectations of the agents, and these expectations may be radically 
different. If agents have rational expectations, then the economy will 
be efficient. 
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PS +2 = ( + I + DPS 1 - 1 PS - g3yb'"*(l+b^)A . 
c+z gg2 g c+i g [ c tf 

+ g3yb"^Aj._g - ̂  al + g3y^ + ̂ ^t+l 

b^dl b^dl bd4 d4 

- £3_P + g3(l + 1 + ̂ )SC - M se 
d4 ^ S ôgl ô ^ 

- g3 somsc PM , - g3 soosc PO , + g3 SBX ,„ 
206gl 6gl 

+ g3(l + 1 + s2lJ SBC . - g3(l + 2 + _a2_ )SBC 
6 6g3 6 Ôg3 ^ 

+ si SBC. . + g3(^ + b"^(l+b))SBHF. , , 
S b d4 ^ 

- g3( ̂  + 2 + 1 )SBHF. + £3 SBHF^ . 
bd4 b ^ b 

+ g3 SBHCj.^2 - 83 SBHCj.^^ (4.44) 

The market clearing prices for soybean meal and soybean oil are; 

2 
P M . =  -  s o m s c  * 2 . 5  P M . , ,  -  s o m s c * s o o s c * 5 0  P O . . ,  

^iôTiî ~îiâ6iï «=+1 

+ somsc*50 PS. + soTnsc*50(l+l + sO ) SC. 
mlôgl ml 6 fir 

_ A _ 3Omsc*50 SC - m2 Z1 „ - mO + _1 SMH , (4.45) 
ml It ml6 ml ml ml 

PO „ = soo3C*100 ( 1 + J, + _sO ) SC.,, - JL_ SC. 
^ kl 6 ôgl ôkl 

- somsc PM^,, - soosc PO^., + 1 PS.,. 

206gl kl ^ kl 

+ I SOH - M Z2 - M - i (4.46) 
kl kl " kl kl 
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Thus, in summary, the equations for the four choice variables are 

as following: 

for t = 0, 4, 8, ... 

- pi ^ 5^^ (1/P2)'(b 

- ̂ Ct+i+a' - (4-48) 

for t = 0, 1, 2, 

where pi + p2 = d3 + b~^(l+b) 
bd4 

pi p2 = 1/b 

and = 3 PS^ + s^ 

S0^^2 • " (S8™t+i+2> 

for t = 0, 1, 2, 3, 

where XI + X2 = 1 + 1/6 + gO/ôgl 

XI X2 = 1/6 

SBCM^^2 ° ̂̂ t+2 + P0j._j_2*soosc - PS^^g 

20 

sbc^^2 • " s»<=t+i 4- I-o t+i+3) 
S3 

- Et(*Sc+i+2)) (4-50) 

for t = 0, 1, 2, 3, 

where 91+02=1+ 1/6 + g2/6g3 

61 02 = 1/6 

The expected value E^(.) in equations (4.47) through (4.50) indicates the 

conditional expectation E(. [ ^), where contains at least all 

past values of all endogenous and exogenous variables in the model 
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accumulated up to time t. Equation (4.47) says that the contingency plan 

for acreage planted is a function of soybean acreage planted last season, 

anticipated price received at harvest and for future time periods. 

Tlie acreage planted varies directly with the anticipated prices — 

3A. ^ / 3A^ \ 
or —E ' 0 c > 0 as well 1 . The contingency plan for holding 

3Pt+j r^^t+j / 

soybeans on-farm (SBHF^) depends upon its lag value and current and 

anticipated price changes. Farmers tend to hold more beans, either 

physical inventory or futures contracts, if they expect higher prices in 

the future. Soybean crush (SC^) at time t depends upon beans crushed at 

t-1 and the whole anticipated future course of the soybean crushing 

margin (SBCM). A high price of beans at t will lower the quantity of 

3SC 
beans crushed at t or t <0. 

3PS^ 
t 

The sign of 3SC^ and 3SC^ are expected to be positive. Soybean 

3PM^ 3PCi^ 

inventory off-farm is a function of its lag and the whole course of 

3 SB 

3PS 

&SBC 
anticipated price changes in the future. We expect t to be positive 

t+1 
â SBC 

t to be nagative. Note that all coefficients in tt 
3PS. 

t 

equations depend upon structural parameters underlying the model. In 

order to illustrate how the agents reacts to changes in price expectations, 

consider an example illustrated in Figure 4.1. 

Panel (1) is the price linkage (equation (4.6)) between wholesale 

price PS J. and price farmers receive P^. Panel (2) and (3) are the demand 

for soybean crush SC^ and exports SBX^. 
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Figure 4.1. Graphical relationships of soybean complex 
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Panels (4) and (5) are soybean inventories on-farm SBHF^ and soybean 

inventories off-farm SBC^. In order to derive the seasonal supply curve 

SI J., consider the following market condition; 

SC. + SBX. + SBHF. + SBC^ + SBHC^ = SB^ + SBHF^ , + SBC^ . + SBHC, \ 
t t t t t t t-1 t-1 t-1 

This equation says that total demand — soybean crush plus exports plus 

total inventories at the end of period (SBHF^ + SBC^ + SBHC^), equals to 

total supply — production plus beginning stock. The demands for holding 

stocks at the end of quarter t becomes the available supply at t+1. 

Thus, if holding demand is subtracted from the right-hand side, we get 

seasonal available supply such as Sl^ in Panel (6). The curve Sl^ is 

upward-sloping, because SBHF^ and SBC^ slope downward. At equilibrium we, 

therefore, obtain: 

SCj. + SBXj. = (SB^ + SBHF^_j + SBCj._j + SBHCj._j^) 

- (SBHF^ + SBC^ + SBHCp (4.51) 

The curve in Panel (6) is the sum of SC^ and SBX^. Let SO be the 

reference line referring to (SB. + SBHF. , + SBC. , + SBHC^ ,) at harvest . 
t t-i t—i t—i 

time (first quarter of the crop year), then equation (4.51) at harvest 

time can be written as: 

Dj. = SO - (SBHFJ. + SBGj. + SBHC^) , or 

Dj. = Sl^, and 

equilibrium price PS^ is determined at PSg. Given SMD^ (total demand for 

soybean meal) and SOD^ (total demand for soybean oil), we get the 

equilibrium price of soybean meal and oil at PMq and POq. 

Now assume that agents expect the price of soybeans to increase in 

the next period. Given everything else unchanged, SC^ and SBX^ will 
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shift up to the right and thus D ^^^t • > 0. SBHF and SBC also 

shift to the right which makes Sl^ shift to S2^. The new equilibrium 

price is higher at PS^^, and the price farmers receive is also higher at 

P^. The quantity of soybean crush decreases. We assume for now that 

SMD^ and SOD^ stay unchanged; therefore, the new equilibrium price of 

soybean meal and oil increase at PM^ and PO^. 

The non-choice variables PS^, PM^, PO^ are endogenous and have to 

be solved simultaneously with the four choice variables — A^, SC^, 

and SBCj.. Thus, price expectations concerning PS^, PM^ and PO^ are 

endogenous. The endogenous price expectations are addressed by Muth 

(1961). The easier approach is to take prices as exogenous — determine 

outside the model. It is worth mentioning that an attempt was made to 

treat PM^ and PO^ as exogenous. This attempt failed resulting from the 

Granger causality test. 

The Decision Rules under Rational Expectations Hypothesis 

It is known from the price linkage (4.6) that 

Pj. = gPSj. + s^ , thus, 

Et(=t+k) = 0 k > 1 

Substituting E^(P^_^^) into equation (4.47) and (4.48), we get: 

*t+4 - + /A) B : (b)'"' 

Ul(l-b^)y ^dl j k=0 
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SBHF 
a4 1=0 

- (ti) Lo 

- I È J J  _d2 
d4 / (1- plb) 

The other two choice variables are: 

(4.53) 

SC +2 = SC + A1 somsc Z (1/X2)\(PM ) 
^ t+i 20 ^ 

+ Ai soosc z (1/A2)1 E (PO. . ..J 
gi 1=0 ^ 

-US (1A2)4^(PS^^_^2) (4.54) 
gl 1=0 

SBC^^2 = Gl SBC^^ + 01 Z (1/82)1 EjPS^j^+g) 

1=0 

-I |1 ï_^ (4.55) 

The rest of the restrictions are: 

pi + p2 

pi p2 

XI + X2 

XI X2 

0 1  +  0 2  

0 1  0 2  

d3 + b"^(l+b) 
bd4 

1/b 

= £ÇL. + 1+1 
6gl 6 

=  1 / 6  

b2 + 1+1/6 
<Sg3 

1/6 

(4.56) 
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In order to write equations (4.52) through (4.55) into explicit forms, 

we use a time series interpretation on all variables in the model.^ We 

have shown from equation (4.44), (4.45) and (4.46) that PS^, PM^ and PO^ 

are functions of its lagged values, lagged choice variables and other 

exogenous variables. In order to show how to find solutions to 

Et(PMt_j_k) E^(PO^^k), we have to make assumptions concerning the 

variables on the right-hand side of the three price equations. Let 

and X^j. be covariance stationary time series vectors as the following: 

"it • Vit-i + 'it 

''2t " V2t-1 * '2t M'58) 

"at • Vst-l + 'at (4-59) 

where X^^, X^^ and X^^ are vectors of current and lagged values of all 

variables in the price equations. If a variable in X^^ has r^^ order of 

autoregressive realization, then we need (r^-1) lagged values in the X^^. 

matrix. For example, taking only PS^ in X^^, we have: 

^If PS^ is a covariance stationary time series, then E^(PS^) is a 

constant for all t. This implies that the infinite sum on the right-hand 
side of equations (4.52) through (4.55) converse to equilibrium level. 
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Kit = 

fPS, 

PS 
t-1 

PS 
t-2 

PS^- - + 1 

'^11 ^12 ' 

1 0 

0 1 

0 0 

'Iri 

0 

0 

0 

0 

0 

0 

PS 

PS 

t-1 

t-2 

PSt:r + V 
1+2 

It 

PS 
t-r 

1+1 

where y , y ... y are coefficients of PS. PS ... PS. 
J.1 Lz. ir t-1 t—z 1 

Some of the may be zero, but y^^ cannot be zero. We arrange and 

in the same fashion with PM^ and PO^ being the first elements in those 

matrices. 

Let U^, Ug and be row vectors with one being the first element and 

zero otherwise or 

= (1, 0, 0...0) 

Therefore, ^(PS^^^) = E X^^^^ and 

Z (b)k E (PS ) = U Q F (bA )V\ 
k=0 t k=0 

where are eigenvectors of and 

are eigenvalues of and 

B - q.Ajq;! 
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We pssume that matrices and B^ are known; therefore, we can 

rewrite equations (4.5 2) through (4.55) as: 

2 

4. 

d, 11 1-p.b 
(4.61) 

1\somsc 1^-1, 
'V? 'rVl "242" - »l"2l "2 "2^+2 

+  ^ j s o o s o n j Q j d - l j S A j r V s M  

(4.62) 

where and are eigenvectors and and are eigenvalues of B2 

and Bg, respectively. 

't+2 1 t+I 
SBC^.„= e.SBC,., + ( U^Q^[I -

8; )"A" -
(4.63) 
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The equations (4.44), (4.45), 4.46), (4.60), (4.61), 4.62), (4.63), 

structural equations, the restrictions (4.56), and the stochastic processes 

of all exogenous variables will be used in the estimation. 

The rest of this chapter is the derivation of the other two price 

expectations hypotheses—adaptive and cash-futures price expectations. 

Adaptive Price Expectations of Soybean Market 

We will use the formation as the following: 

P® «= a S (l-a)l P . ; 0 < a < 1 
i=0 

Applying the concept to (4.47) through (4.50), equation (4.47) can be 

written as; 

"  & lo  

Let assume that = g P^+5+4k-j ; and 

®t+6+4k = ^ =t+5+4k-j : ^ ° 

and t = 0, 4, 8, ... 

We can write A^^^ as: 

\ i b^y 6 | (b)4k g f (I-S)^PS 
dl ^ _ y4 dl k=0 

" & lo !=0 
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+ i_ "'y® B ; J „ »-8)^fV5+4k-J 

dl(l-bS dl 

(4.64) ' 

for t = 0, 4, 8, ... 

Thus, the soybean acreage planted next season depends upon this season 

acreage planted, current and lagged values of the prices PS^ and s^. 

Soybean Inventory on-fam can be written as: 

- pi SBHF^^j + ̂  Ï (plb)i(b(6PsJ^3^^ + «^3+^ 
d4 i=0 

- + =;+2+l) - 42) (4.65) 

Let assume that = g (l-g)^PS^_^^_^2_j ; (i-j) <0 

®t+i+3 " ̂ 1=0 ^^"^^^®t+i+2-j ; (i-j) - 0 

Thus, SBHF^^2 can be written as: 

SBHF = pi SBHF + ( pi) g (plb)^bg ? (l-g)^PS 
^ d4 1=0 j=0 ^ 

- g ? (l-g)'^PS^j,^^_j) 
j=0 

1=0 f=0 ̂^"'^^^®t+i+2-j 

- h f (l-h)^Sj.^^^j_j) - ol d2 ; (i-j) < 0 (4.66) 

d4(l-plb) 

^Since g b^^, ? (1-g)^ and ç (1-h)^ are absolute summable, we 
k=0 3=0 j=0 

can interchange the suimnations. 
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Equation (4.66) says that soybean inventory on-farra for the end of the 

harvesting period depends upon the inventory In t+1 period and the sum of 

the weighted average of the changes in the soybean prices and the 

soybean margins. The quantity of soybean crushed can be written as; 

Ç n (™t+i+2 -S»:': + 
gl 1=0 

*SOOSC - ; or 

=<=t+2 - " S<=t+1 + M SOMSC 

+ U SOOSC ? a 16)^ PO®,,. 
gl 1=0 
-n? (X16)l psf (4.67) 

gl 1=0 

Let assume that ^^^(.+2+1 = 1 ^ (1- n)^ ^^t+i+l-j ° 

L+2 - • o- ^Vi+i-j i " 

SCt^2 ChGn is: 

SC.., = XI SC.,. + U SOMSC ? (X16)S ? (1-n )^ PM_, , 
ttx g J 1=0 j=0 t+i-j+i 

+ U SOOSC Ê (X16)l* ? (l-*)j P0_.,. , gl 1=0 j=0 t+i+i-j 

-n? (A16)lg . (l-g)J PS (4.68) gl 1=0 j=0 J 
where (i-j) £ 0 

Equation (4.68) says that the quantity of soybeans crushed in the 

harvesting time depends upon the level of soybeans crushed and the past 

history of PM, PC, and PS. Without going through the same process we can 

also solve for the soybean inventory off-farm as: 

PO 



www.manaraa.com

60 

SBC 
t+2 

= 01 SBC_ , + 01 ? (016)1 (6 PS 
J3 1=0 t+i+3 " ̂^t+i+2^ 

= 01 SBC_, + 61 ? 
iTl^O 

(016)1 g (l~g)^P®t+i+2-j 
j=0 

- g S 
j=0 

(i-s)Jps,+i+i.j ; ( i-j) 1 0 (4.69) 

It is worth noting that the set of equations under adaptive price • 

expectations is very similar to the set of equations under the rational 

expectations hypothesis. The conventional practice of estimating the 

adaptive version is to regress these equations without the cross-

equation restrictions as in the rational expectations version. Using the 

Koyck transformation we can get rid of the infinite summation. 

Under this hypothesis we will follow the Samuelson hypothesis on 

anticipated speculative prices (1965, 1971, and 1976). If is the 

sequence of spot prices of a commodity and the sequence of prices of 

futures contracts are (....y^ Yg 8= P ) when y^ ^ is the 

price quoted at t for a futures contracts delivery at 0 (which is 0-t 

periods ahead). 

Using the Samuelson (1965) hypothesis we get: 

In words, the futures price quote at t for delivery time at 6 is the 

expected cash price to prevail at time 0, given past values of the spot 

prices and current spot price. Variable y is in fact a martingale series. 

Let t' P°^t+i+l' futures prices of soybean meal and oil 

quote at t for t+i+1 contracts. 

Cash-Futures Price Expectations of Soybean Market 
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^ = a futures price quoted at t for t+i+1 contract. 

SBCMFt+i+l,t = ™^+i+l.t " SOMSC + * SOOSC -

Futures prices of soybeans, soybean meal and soybean oil are used as 

proxies of their anticipated cash prices. Substituting PSF, PMF and POF 

into (4.47) through (4.50), a set of model equations under the cash-futures 

price expectations is obtained as follows; 

^t+4 - ̂ t " ' ~ (t)(4) ' (4 * b^y E (b)4kpsF 
k=0 t+6+4k,t 

- I 
00 U 

Z (b)* s 
k=0 t+6+4k 

+ ("d^ ("iW fSft+l+3.t 

( 4 . 7 0 )  

+ ( —- ̂ (b-L) S (pib)^ s, 
iZo '^1 ' C+6+4k d^(l-p^b) 

'c+2 - ̂ 1-t+l ' 20 (3^1^)^ SC.^n = XnSC, 
somsc 

PMF 
t+i+2,t 

+ SOOSC - I  ( X J S )  P 0 F C + I + 2 , C  

==<=t+2 - + I W-L) («i»)" 

(4.71) 

(4.72) 

( 4 . 7 3 )  

It is worth mentioning that further research is needed to improve this last 

hypothesis. With certain assumptions concerning the futures prices, we can 
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prove that this last hypothesis is, in fact, rational expectations. The 

second notice is that we can solve for the futures prices which clear the 

market. Cash prices can also be solved by applying the theory of storage 

cost. However, this will not be done in this research. 

Notice that the appearances of the three sets of models are the same. 

However, the interpretations are quite different. The market price (PS^) 

is derived from the first-order conditions under the rational expectations, 

and all the decision rules subject to cross-equation restrictions, or all 

coefficients in the model are a nonlinear function of the structural 

parameters. In order to get asymptotically consistent estimates, we have 

to estimate all coefficients and free parameters together. This imposes a 

very complicated problem in estimation procedures. 

Under the other two hypotheses, adaptive and cash-futures price 

expectations, ecoriometricians do not have to impose the restrictions in the 

estimation, even though it is quite clear that all the coefficients under 

the other two alternatives also depend upon the structural parameters. 

If we know the process of futures prices of soybeans, soybean meal and 

soybean oil, we can discover the underlying parameters - d^, dg, dg, d^, 

Sq> ®2' rational expectations. However, this cannot be done 

under adaptive expectations, because we cannot discover the "coefficient of 

expectations" in this version. Estimation of the model under rational 

expectations is presented in the next chapter. 
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CHAPTER 5. ESTIMATION OF THE SOYBEAN MARKET 

In Chapter four, a theoretical derivation of the farmer's and 

processor's decision rules was presented. Under the rational-expectations 

hypothesis, the set of derived decision rules are the optimal time paths for 

soybean acreage planted, inventory on-farm, soybeans crushed, and inventory 

off-farm. These decision rules reflect current and expected future profit 

opportunities for the agents. The decision-rule coefficients are highly 

nonlinear functions of the underlying parameters of the structural model. 

The underlying parameters which appear in the agent's objective functions 

(6, d^, dg, d^, d^, gg, g^, gg, gg, b and 6) and parameters characterizing 

the processes of exogenous stochastic variables are to be estimated. The 

following exogenous variables are included: 

i) exogenous variables which appear in objective functions, and 

ii) variable(s) which help(s) to predict the variables in (i). 

Before discussing the estimation procedure, it is important to state 

the assumptions concerning the exogenous variables in (!) and (ii). Let 

W(t) be a "causally prior" stochastic vector. The vector W(t) is an 

observable vector of variables which is a subset of agents' information 

set, or, 

W(t) C n(t) and 

W(t) N G(t) = 0, where e(t) is an unobservable variable. 

If it is assumed that Y(t) is a vector including choice variables — A^, 

SBHFj., SCj., and SBC^ and endogenous price variables PS^, PM^ and PO^ — we 

require 
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w ( t )  n  Y( t )  = 0, 

or it implies that there are no choice variables or endogenous variables in 

vector W(t), The last requirement is Y(t) must fail to Granger-cause W(t). 

If the Granger test is accepted, a finite one-sided distributed lag of W(t) 

can be written on the right-hand side of Y(t). Thus, Granger-causality 

tests must be performed for all variables before estimating the model. 

U.S. quarterly data from 1962 through 1977 are used (although data 

from 1960 through 1961 are used as initial values). Most data are obtained 

from various statistical reports and publications of the United States 

Department of Agriculture, unless otherwise stated. Other data were 

obtained by personal contact with USDA officials and Iowa State University 

Collègues 

Estimation Procedures of the Soybean Market Under the Rational 
Expectations 

The objective of this sector is to estimate the model's parameters 

using all available information and cross-equation restrictions in the 

model derived in Chapter four. There are three steps* needed for this 

estimation. The first step is to adjust all data by their means and time 

trend. Then, this adjusted data is used to perform stationary tests using 

Fuller's method (Fuller, 1976). Some literature suggests taking 

seasonality as well as trend out of the series. This is debatable. 

Great appreciation is expressed to Duane Hacklander and George 
Allen, USDA, for their helpful suggestions concerning the computation of 
quarterly grain-consuming animal units and high-protein animal units. 
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Whether or not to remove seasonality depends upon the purpose of the 

research. It is believed that seasonality cannot be removed independently 

from the several series being dealt with in this research because of the 

seasonal interrelationships which exist among various series in this model 

(Kallek, 1978). Granger (1978) also called attention to the causes of 

seasonality. Among other things, weather and expectations are at least two 

factors which cause seasonality in agricultural commodities such as 

soybeans. Though modelling seasonality behavior is a very interesting 

area, it is a separate subject from this research. 

The results from Fuller's test can be used to determine the lag length 

of the realization of all time series. The second step is to perform the 

Granger-causality test on the following pair of vectors: 

Y(t) 4- W(t) 

W(t) -V Y(t) 

The method used for causality test is Sargent (1979), which uses the F-

statistic. 

The third step is to estimate equations (4.60), (4.61), (4.62) and 

(4.63) both with and without restrictions on the parameters. The details 

of this step are presented later. 

Time series analysis 

The identification stage of the Box-Jenkins procedure has been 

performed for all raw data using the TSERIES package (Meeker, 1977). 

Autocorrelation functions of all variables indicate nonstationary time 

series and some series such as soybean stock and soybean acreage planted 
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show strong seasonality patterns. Therefore, Fuller's procedure is used to 

search for the "unit root" In. tUe time series. 

Let Z(t) be a p^^ order autoregresslve time series such as: 

P 
Z(t) + Z a.Z(t-j) = e(t) (5.1) 

j=l ^ 

If a unit root is suspected, the unit root should be isolated as a 

2 
coefficient and a test performed. Equation (5.1) can be written as: 

for t = p+1, p+2, ... (5.2) 

P P 
where p ^ 2, 0. = Z a., i = 2, 3, ... p, and 8, = Z a.. If there is a 

j=l ̂  j=l J 

unit root, 0^ is equal to one. .Thus, this test is applied to all adjusted 

data with various orders of p. By using the cumulative distribution in 

Fuller (1976, p. 373), the hypothesis of 0^ being one can be tested. 

Table B.1 and B.2 in Appendix B give results of the test for adjusted 

endogenous and exogenous variables. Various orders of autoregresslve 

models are tested; however, only those which are significant or those which 

give small mean square errors are reported. The significance of the fourth 

and fifth order autoregression terms indicate the potential of seasonality 

in the series. Examples of such series are soybean stock, soybean acreage 

planted, soybean oil stock, soybean meal stock, fish meal price, and high 

^The proof of this test is in Fuller (1976, pp. 366-382). A test of 
a unit root for moving average models can also be found in Fuller. 
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protein animal units. The rejection of null hypothesis of 0^ equals one in 

the second-order test for, say, PS^, implies that the second-order auto-

regressive model is a good candidate to be used for the realization of PS^. 

When more than one realization is accepted, further tests and adjustments 

are needed to conclude the test. Table B3 is the "t-like" distribution for 

the test. The critical statistic value for infinite degrees of freedom at 

a = 0.05 is -3.41. We reject the null hypothesis of 8^ being one if the 

computed "t-like" statistic is greater than the critical value in absolute 

value or T = 
01-1 

S01 

> t Q Q2. The lagged length from this test is used in 

estimating the autoregressive model. 

The results from Table B.l and B.2 confirm that some data have strong 

seasonality. Therefore, autoregressive models of order two to six have 

been estimated as the following: 

6 
Y(t) = C + Z o(s)Y(t-s) + Y,Fall 

s=l 

+ YgWint + YgSpri + e^. (5.3) 

6 
and, X(t) = C + 2 B(s)X(t-s) + y.Fall 

s=l 

+ YgWint + YgSPfi + (5.4) 

where Y(t) and X(t) are all endogenous and exogenous variables, and Fall, 

Wint and Spri are seasonal dummies for the fall, winter and spring 

quarters. The results of the autoregressive models (AR) are reported in 

Tables 5.1.1 to 5.1.2. The models which represent the realizations of all 

variables are summarized in Table 5.1.3. 
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Table 5.1.1. Autoregressive*model of detrend endogenous variables with 
seasonal dummy variables . 

8 
Model: Y(t) = C + E oi(s)Y(t-s) + y^Fall + y^Wint + YoSpri + e 

s=l i J t 

0(1) a(2) a(3) a(4) ct(5) 

< 1.05 

(O.Ol)b 

0.85 
(0.13) 

PS^ 0.84 
(0.13) 

-0.13 
(0.13) 

PSt 0.85 
(0.13) 

-0.21 
(0.17) 

0.09 
(0.13) 

PSt 0.72 
(0.09) 

-0.04 
(0.14) 

0.12 
(0.13) 

SCt . 0.79 
(0.12) 

-0.36 
(0.13) 

SCt 0.75 
(0.13) 

-0.28 
(0.17) 

-0.11 
(0.13) 

SCt 0.57 
(0.11) 

-0.14 
(0.14) 

0.15 
(0.16) 

SBC J. 0.21 
(0.11) 

SBC J. 0.20 
(0.12) 

0.008 
(0.12) 

SBC J. ' 0.37 
(0.11) 

0.56 
(0.09) 

-0.37 
(0.11) 

a(8) 

0 . 2 2  
(0.13) 

^All variables in Aj. are multiplied by dummy variables zero one — one 
in planting quarter and zero otherwise. 

'^Standard deviation of the coefficient. 

^Significant at a = 0.01. 
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Fall Wint Spri MSE 
^5,74 . 

3.44 0.99 6254* 

0.36 0.99 3208* 

-0.39 
(0.18) 

0.05 
(0.19) 

0.20 
(0.18) 

0.68 0.60 14.83* 

-0.38 
(0.19) 

0.07 
(0.19) 

0.14 
(0.19) 

0.68 0.57 12.33* 

-0.41 
(0.19) 

0.01 
(0.19) 

0.23 
(0.10) 

0.69 0.60 12.14* 

6.68 
(3.23) 

6.74 
(3.03) 

-3.02 
(3.03) 

161. 0.52 11.96* 

6.87 
(3.2) 

7.89 
(3.35) 

-3.54 
(3.11) 

162.6 0.52 10.01* 

4.13 
(3.4) 

11.34 
(3.3) 

-1.03 
(3.08) 

185.2 0.45 7.67* 

288.14 
(30.3) 

26.19 
(.31.3) 

-99.24 
(16.9) 

5387.0 0.86 108.2* 

288.4 
(30.7) 

28.5 
(46.0) 

-101.0 
(31.5) 

5465.0 0.86 
* 

85.4 

115.18 
(36.5) 

29.57 
(27.7) 

-39.8 
(16.5) 

3476.0 0.91 118.61* 
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Table 5.1.1 - continued 

Model: Y( t )  =  C  
6 

+  Z a ( s )Y ( t - s )  +  
S=1 

Y^Fall + + Y^Spri + 

C (1) (2) (3) (4) (5) (6) 

SBC J. -2.54 
(7.0) 

0.37 
(0.12) 

-0.007 
(0.12) 

0.55 
(0.09) 

-0.36 
(0.11) 

-0.03 
(0.12) 

SBHFj. -5.93 
(9.4) 

0.27 
(0.11) 

SBHFj. -1.28 
(7.2) 

0.55 
(0.11) 

0.69 
(0.09) 

-0.43 
(0.11). 

SBHFj. -1.1 
(6.9) 

0.79 
(0.12) 

-0.40 
(0.12) 

0.79 
(0.09) 

-0.69 
(0.14) 

0,28 
(0.12) 

PM^ -2.16 
(3.1) 

0.97 
(0.13) 

-0.29 
(0.13) 

• PMj. -2.27 
(3.12) 

0.95 
(0.13) 

-0.22 
(0.18) 

-0.07 
(0.13) 

o
 

rt
 -0.1 

(0.44) 
0.88 
(0.13) 

-0.05 
(0.13) 

O
 

rr
 -0.16 

(0.43) 
0.87 
(0.08) 

- 0.12 
(0.14) 

-0.24 
(0.13) 
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Fall Wint Spri MSB *5.74 

113.1 
(37.5) 

20.7 
(39.5) 

-31.6 
(29.6) 

3574.0 0.91 86.52* 

286.5 
(26.5) 

-14.3 
(31.5) 

-111.3 
(17.1) 

6561.0 0.81 
* 

74.9 

103.6 
(32.7) 

-13.4 
(26.8) 

-36.51 
(16.68) 

3812.0 0.89 
* 

94.7 

67.9 
(33.) 

-39.7 
(32.9) 

3.77 
(28.5) 

3380.0 0.91 81.47* 

-6.57 
(5.3) 

4.89 
(5.4) 

3.13 
(5.24) 

573.6 0.61 17.61* 

-6.84 
(5.39) 

4.86 
(5.44) 

3.64 
(5.36) 

580.9 0.61 14.53* 

-0.93 
(0.77) 

-0.09 
(0.77) 

0.05 
(0.75) 

11.78 0.71 26.79* 

-0.72 
(0.75) 

-0.15 
(0.74) 

0.05 
(0.72) 

10.98 0.73 24.81* 
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Table 5.1.2. Autoregressive model of detrend exogenous variables with 
seasonal dummies 

Model: Xt = *0 + 
6 
2  e(s)x ( t  

8=1 
-s) + Y ̂Fall + Y gWint + Y gSpri + e^ 

c  6 (1 )  0 (2 )  8 (3 )  g (4 )  6(5) 3(6) 

SBXj. -6.8 
(2.9) 

0.06 
(0.13) 

-0.05 
(0.14) 

SBXj. -3.7 
(2.9) 

0.11 
(0.14) 

0.30 
(0.14) 

0.01 
(0.15) 

SBX^ -8.09 
(3.03) 

0.05 
(0.13) 

-0.04 
(0.14) 

-0.18 
(0.14) 

SBXj. -6.1 
(2.7) 

-0.21 
(0.13) 

0.30 
(0.13) 

SOX —6.4 
(9.5) 

0.85 
(0.13) 

-0.17 
(0.13) 

SOX -6.02 
(9.6) 

0.86 
(0.13) 

-0.22 
(0.17) 

0.06 
(0.13) 

SOX -7.6 
(9.5) 

0.73 
(0.09) 

0.14 
(0.12) 

-0.24 
(0.12) 

SOH -17.3 
(13.7) 

1.18 
(0.12) 

-0.39 
(0.12) 

SOH -18.8 
(13.4) 

1.09 
(0.13) 

-0.09 
(0.19) 

-0.24 
(0.13) 

SOH -19.12 
(13.4) 

0.98 
(0.07) 

-0.44 
(0.13) 

0.23 
(0.12) 

SOH -19.3 
(13.4) 

1.13 
(0.13) 

-0.22 
(0.17) 

-0.39 
(0.17) 

0.39 
(0.2) 

-0.16 
(0.14) 

SMH 1.87 
(5.7) 

1.1 
(0.13) 

-0.27 
(0.13) 
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Fall Wint Spri MSE R2 F 

14.31 
(6.0) 

6.09 
(6.3) 

8.73 
(4.87) 

397.7 0.45 9.13* 

11.8 
(6.5) 

4.2 
(4.9) 

5.7 
(4.5) 

372.8 0.49 8.91* 

15.57 
(6.04) 

7.56 
(6.4) 

3.6 
(6.2) 

392.6 0.46 8.0* 

10.24 
(4.6) 

6.91 
(4.4) 

1.06 
(5.6) 

355.5 0.51 11.55* 

-20.. 77 
(17.12) 

13.34 
(16.6) 

48.09 
(16.05) 

5,290.4 0.57 15.05* 

-17.52 
(18.5) 

11.19 
(17.3) 

46.26 
(16.6) 

5,363.8 0.57 12.41* 

-22.7 
(16.6) 

4.64 
(16.5) 

40.9 
(17.4) 

5,170.7 0.60 13.22* 

118.4 
(26.3) 

-8.9 
(25.6) 

-14.9 
(22.9) 

10,782. 0.79 41.69* 

113.74 
(25.8) 

21.43 
(29.8) 

-34.02 
(24.6) 

10,323. 0.80 36.86* 

115.6 
(26.9) 

41.9 
(23.07) 

-10.04 
(22.6) 

10,279. 0.80 37.06* 

148.4 
(34.4) 

6.15 
(32.5) 

-20.7 
(23.6) 

10,191. 0.81 28.35* 

24.32 
(11.3) 

10.2 
(10.2) 

1.74 
(9.9) 

1,997.4 0.78 40.02* 
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Table 5.1,2 - continued 

6 
Model: + Z 3(s)X(t-s) + y^Fall + YjWint + y^Spri + e^. 

C B(l) B(2) 3(3) 3(4) 3(5) 3(6) 

SMH 1.88 
(5.8) 

1.1 
(0.14) 

-0.26 
(0.21) 

-0.005 
(0.14) 

SMH 1.6 
(5.7) 

0.98 
(0.07) 

-0.37 
(0.15) 

0.24 
(0.14) 

HPAV -0.05 
(0.07) 

0.82 
(0.13) 

-0.04 
(0.13) 

HPAV -0.04 
(0.08) 

0.82 
(0.13) 

-0.12 
(0.16) 

0.10 
(0.12) 

HPAV -0.05 
(0.07) 

0.79 
(0.09) 

0.156 
(0.13) 

-0.21 
(0.12) 

HPAV -0.05 
(0.07) 

0.83 
(0.13) 

-0.04 
(0.14) 

0.16 
(0.13) 

-0.29 
(0.16) 

COOP 0.07 
(0.45) 

0.58 
(0.13) 

0.23 
(0.13) 

COOP -0.07 
(0.45) 

0.58 
(0.14) 

0.23 
(0.15) 

-0.01 
(0.16) 

COOP -0.10 
(0.43) 

0.92 
(0.1) 

-0.47 
(0.15) 

0.29 
(0.13) 

FIMP^ -1.64 
(4.95) 

1.11 
(0.13) 

-0.34 
(0.13) 

FIMP^ -1.7 
(4.9) 

1.05 
(0.13) 

-0.13 
(0.19) 

-0.18 
(0.13) 

FIMPJ. -2.07 
(4.66) 

0.89 
(0.08) 

-0.2 
(0.14) 

-0.08 
(0.13) 
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Fall Wint Spri MSE F 

24.2 10.4 1.68 2,033.7 0.78 32.75* 
(11.6) (12.02) (10.24) 

18.98 21.85 8.98 1,942 0.79 34.72* 
(10.2) (10.2) (9.7) 

3.51 -1.53 -3.26 0.39 0.93 159.2* 
(0.28) (0.49) (0.31) 

3.2 -1.34 -2.92 0.39 0.93 132.10* 
(0.46) (0.54) (0.51) 

2.96 -0.96 -2.77 0.37 0.93 137.18* 
(0.51) (0.37) (0.47) 

3.08 -0.76 -2.90 0.38 0.94 100.63* 
(0.64) (0.66) (0.63) 

-0.87 0.22 0.67 12.4 0.57 15.25* 
(0.79) (0.79) (0.77) 

-0.88 0.22 0.68 12.65 0.58 12.48* 
(0.79) (.80) (0.78) 

-1.07 0.6 0.79 11.32 0.62 15.02* 
(0.75) (0.75) (0.74) 

6.31 3.99 -4.33 1,509.6 0.73 29.7* 
(8.7) (8.7) (8.5) 

6.9 5.06 -4.97 1,485.7 0.73 25.46* 
(8.7) (8.7) (8.5) 

4.65 6.67 -2.73 1,336. 0.76 29.31* 
(8.19) (8.17) (8.01) 
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Table 5.1.2- continued 

6 
Model: X^. = Xq + Z 3(s)X(t-s) + y^Fall + YgWinC + y^Spri + e^ 

C 3(1) 3(2) 3(3) 3(4) 3(5) 3(6) 

TB 0.62 
(0.26) 

1.25 
(0.12) 

nO.36 
(0.12) 

TB 0.60 
(0.27) 

1.27 
(0.13) 

-0.42 
(0.21) 

0.05 
(0.13) 

CORPF -0.008 0.89 
(0.06) 

CORPF -0.004 0.97 
(0.07) 

-0.15 
(0.07) 

CORPF r0.003 0.87 
(0.089) 

0.2 
(0.12) 

-0.25 
(0.09) 
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Fall Wint Spri MSE 

- 0 . 0 8  - 0 . 2 1  - 0 . 0 5  
( 0 . 1 2 )  ( 0 . 1 1 )  ( 0 . 1 1 )  

- 0 . 0 9  - 0 . 1 9  - 0 . 0 5  
( 0 . 1 3 )  ( 0 . 1 2 )  ( 0 . 1 2 )  

0 . 2 8  0 . 8 6  7 2 . 1 9 *  

0 . 2 9  0 . 8 7  5 9 . 2 5 *  

0 . 0 4  0 . 7 9  

0 . 0 4  0 . 8 0  

0 . 0 3  0.81 
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Table 5.1.3. The selected autoregressive model 

Variables Model Restriction 

A AR(8) a(l) = a(2) = a(3) = a(5) 
= a(6) = a(7) = o 

PS • AR(2) 

SC AR(2) 

SBC AR(5) a(2) = a(3) =0 

PM AR(2) 

PO AR(2) 

SBHF AR(6) a(3) =0 

SBX AR(4) 3(1) = 3(2) = 0 

SOX AR(2) 

SOH AR(5) 6(2) = 3(3) = 0 

SMH AR(5) 3(2) = 6(3) =0 

COOP AR(2) 

FIMP AR(5) 3(2) = 3(3) = 0 

TB AR(2) 

HPAU AR(5) a(2) = a(3) =0 



www.manaraa.com

79 

Soybean stock on-farm (SBHF), soybean stock off-farm (SBC) and high-

protein animal units are the most interesting series of all. For example, 

the SBC series has the following realization: 

SBC. = 0.37 SBC^ T + 0.56 SBC, , - 0.37 SBC, . + e,^ 
t t-1 t-4 t-5 t 

Using Box-Jenkins notation, SBC^ can be written as: 

(l-e^)(l-9^)SBC|. = e ^ ,  

where 9^ is the coefficient for SBC^_^, and 6^ is the coefficient for 

SBC^_^, or, it can be written as: 

(1 - 0^ - 0^ + 0^0^) SBCj. = e^, or 

SBC^ - 0iSBC^_i - 0^SBC^_^ + 0i0 4SBC^_3 = e^ 

This is a first-order seasonal autoregressive process. The seasonality is 

presented in a multiplicative way. The coefficient "0.37" for SBC^_g is 

quite close to the multiplication of "0.37 and 0.56". The series SBHF^ has 

the second-order seasonal autoregressive process such as: 

(1 - 0^ - 0 2)(1 - 04)SBHF|. = e^, or 

SBHF^ - 0iSBHFt_i - OzSGHF^.z " + 8^8^SBHF^_g + 020^SBHFj._g = e^. 

The interaction terms 0^0^ and 0^0^ make the analysis on the soybean stock 

very complicated. Explanation of seasonal time series is in Appendix C. 

Granger causality test 

The variables used as candidates for the "causal" variables Y are: 

corn price received by farmers (CORPF) 

3 
The constant and seasonal terras are ignored for now. 
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soybean export (SBX) 

soybean oil export (SOX) 

high-protein animal units (HPAU) 

cottonseed oil price received by farmers (COOP) 

soybean oil stock (SOH) 

soybean meal atock (SMH) 

T-bill interest rates (TB) 

fish meal price (FIMP) 

These variables are contained in vector W(t). Some of them appear in the 

objective function - SMH and SOH - and the rest are variables which help to 

predict SMH, SOH and/or are variables which are observed by farmers and 

processors. Certainly, there are an unlimited number of variables which 

contain the information needed. These variables may differ in degree of 

influence. We include variables which appear in other research and 

variables suggested by economic theory. The use of a different set of 

variables used is likely to give different results 

The vector Y contains: 

soybean acreage planted (A) 

soybean stock on-farm (SBHF) 

soybean stock off-farm (SBC) 

soybean crushed (SC) 

soybean price, Decatur (PS) 

soybean meal price (PM) 

soybean oil price (PO) 
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Both Y and W have been adjusted for a linear trend. Note that all 

variables in Y and W are seasonally unadjusted series; therefore, 

seasonality patterns still remain. Seasonal dummy variables are added into 

the regression equations when the Granger test is performed. A pair of 

regressions is needed to test the causal hypothesis. They are: 

i) Ho: Wf Y (W fails to Granger cause Y), or 

3(k) = 0^ 

4 6 
Regression I: Y(t) = Z a(s)Y(t-s) + E 3(k)W(t-k) + C + V(t) 

s=l k=l ° 

where Y^ is a constant term, and V(t) is a white noise. 

Accepting the null hypothesis means that W does not "statis­

tically cause" Y. 

ii) Ho: Y f W or a(s) = 0 ' 

^ Ignore seasonal terms for now. In order to test the null hypothesis 
Ho: all g(k) = 0, the following regressions are run: 

4 
i) Y(t) = + E a(s)Y(t-s) 

4 6 
ii) Y(t) = OL + S a(s)Y(t-s) + Z B(k)W(t-k) + e„ 

" s=l k=l 
where and are white noise residuals. An F-static can be computed 

from the sum of squares of errors from i) and ii). Let SSE^ and SSEg be 

the sum of squares of errors from i) and ii), respectively, then 

- SSE 

T-p-q-1 
F = 
c 

where T is the number of observation and p equals to four, q equals to six 
in this case. F^ is distributed as F with (q, T-p-q-1) degrees of freedom. 
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4  6  
Regression II: W(t) = Z B(k)W(t-k) + Z a(s)Y(t-s) 

k=l s=l 

+ Wq + E(t)5 

where Wq is a constant term, and E(t) is a white noise. Failure to reject 

the hypothesis implies that Y does not "statistically cause" W. 

In order to have W appear on the right-hand side of decision rule Y in 

the model, the acceptance of the second and rejection of the first 

hypotheses are needed. F-statistic is used for such a test. The residuals 

from each regression are also tested for white noise. Fisher's-Kappa 

statistic is used for a finite p periodogram ordinates. 

The empirical part of the Granger-causality test requires the arrange­

ment of data in vector Y and X. The vector Y is not necessarily the same 

as the original Y(t) referring to choice variables and endogenous variables 

in the model. Vector Y used in the empirical test refers to variables on 

the left-hand side, and vector X refers to variables on the right-hand 

side. The regression used is: 

^Two regressions are needed for testing all a(s) = 0; they are: 

4  
i) W(t) = 3m + I 3(k)W(t-k) + , and 

k=l 

4  6  
ii) W(t) = 3-9 + 2 e(k)W(t-k) + I a(s)Y(t-s) + 

k=l s=l 

and the F-statistic is computed from the sum of squared errors from the 
two regressions. 
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4 6 
Y(t) = Z a(s)Y(t-s) + E P (k)X(t-k) + c + e (5.5) 

s=l k=l ^ 

where is a constant, and e^ is a white-noise disturbance term. All 

variables in Y and X are filtered with a linear trend. Table B.4 in 

Appendix B presents the results of the regressions in (5.5). Seasonal 

dummies are added into (5.5) when performing the regressions. The 

F-statistic reported in Table B.4 is the statistic for testing the null 

hypothesis of all 6(k) in equation (5.5) equal to zero. We reject the 

null hypothesis for all 3(k) equal to zero if the F-statistic is greater 

than 2.29 or 3.18 at a being 0.05 and 0.01, respectively. The summary of 

results of Table B.4 is in Table 4.2. The first two pairs of equations in 

Table B.4 are the results of the test whether the corn price received by 

farmers (CORPF) Granger-causes soybean acreage planted (A), or whether 

soybean acreage planted Granger-causes the corn price. For corn price to 

be used on the right-hand side of decision rule A^, we must reject the 

hypothesis that all 3(k) = 0 in the first equation of A and CORPF and fail 

to reject the hypothesis of all 3(k) = 0 in the second equation of CORPF 

and A. Rejecting the hypothesis in both equations results in two-way 

causality between the two variables. A one-way arrow in Table 5.2 

represents unitary causality. Two-way arrows refer to bidirectional 

causality between the pair of variables. 

Given variables in our information set, the following conclusion can 

be drawn: 
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Table 5.2. Summary of Granger-causality results 

Direction of causality Y fails to Granger cause 

A 

A 

A 

A 

A 

SBHF 

SBHF 

SBHF 

SBC 

SBC 

SBC 

SC 

SC 

SC 

SC 

SC 

PS 

PS 

PS 

PS 

PM 

PM 

PM 

PO 

PO 

PO 

PO 

FIMP 

CORPF 

SBX 

HPAU 

SOH 

TB 

SBX 

HPAU 

SMH 

SBX 

HPAU 

SOX 

CORPF 

SBX 

COOP 

SMH 

FIMP 

CORPF 

COOP 

SOH 

FIMP 

HPAU 

COOP 

SOH 

CORPF 

COOP 

SOH 

SMH 

PO 

CORPF 

TB 

SBX 

SMH 

FIMP 

SOH 
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i) Corn price received by farmers and the T-bill interest rate can 

be used as exogenous variables on the right-hand side of the 

soybean acreage planted equation. 

ii) Soybean exports are used on the right-hand side of decision 

rule SBC. 

iii) Soybean meal stock and fish meal price can be used as exogenous 

variables on the right-hand side of the soybean crushed 

equation. 

iv) Soybean oil stock Granger-causes soybean price, 

v) Bidirectional causality, represented by the two-way arrows, 

suggests that further investigation is needed for soybean 

stocks, soybean meal price and soybean oil price. The high-

protein animal units (HPAU) cannot be used as an exogenous 

variable in the model. The results from testing the pairs 

A-HPAU, SBHF-HPAU, and PM-HPAU, suggest that the soybean 

variables A, SBHF and PM can be used as exogenous variables in 

the livestock sector. However, the two-way causality result 

from SBC and HPAU may indicate further analysis is needed. 

It is essential to keep in mind that the soybean model presented in 

this research does not incorporate other crops, such as corn. The Granger-

causality tests which are appropriate depend upon the structure of the 

theoretical model. 

It is worth mentioning that the Granger-causality test is also 

performed without seasonal dummies. Table 5.3 summarizes the results of 

such a test. The consistent results with Table 5.2 is soybean oil stock 

Granger-causes soybean price. The difference between Tables 5.2 and 5.3 
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Table 5.3. Summary of causality test 

Direction of causality Y fails to Granger cause 

A CORPF 
A ). SBX 
A V SOH 
A V SMH 
A 4 V TB 
A ^ FIMP 

SBHF » CORPF 
SBHF SBX 
SBHF > COOP 
SBHF < > SOH 
SBHF », SMH 
SBHF TB 
SBHF < FIMP FIMP 
SBC A SBX 
SBC > SOH 
SBC SMH 
SBC TB TB 
SBC t SOX SOX 
SC < SBX SBX 
SC '< COOP COOP 
SC •*— SOH SOH 
SC <— SMH SMH 
SC TB 
SC •<— - FIMP FIMP 
PS > CORPF 
PS -< SBX SBX 
PS ^ COOP 
PS •< SOH SOH 
PS M » FIMP 
PM » COOP 
PM "« SOH SOH 
PO •* y CORPF 
PO -« V COOP 
PO » SOH 
PO » SMH 
PO < FIMP FIMP 
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are due to seasonality patterns in our variables. All residuals from 

Table B.4 in Appendix B have been tested for white noise using the Fisher-

Kappa statistic.^ All residuals pass this test; however, Fisher-Kappa is 

not a powerful test for white noise. Granger-causality tests were per­

formed on variables CORPF, FIMP, and COOP. The literature on conventional 

econometric models of the soybean market indicate these variables are 

closely related with those in the soybean complex. Thus, they are added 

to the set of variables for the estimated model. 

Estimation 

We mentioned in Chapter 4 that the set of equations (4.60), (4.61), 

(4.62), (4.63) and their cross-equation restrictions are to be used in 

estimation. One can use the maximum-likelihood procedure to get the 

estimates of the underlying parameters. To use this method, it must be 

possible to write the model in an explicit form such that the vector of 

residuals of all equations can be estimated. As Sargent (1978) stated, 

"...optimizing rational expectations models does not entirely 
eliminate the need for side assumptions not grounded in economic 
theory. Some arbitrary assumptions about the nature of the 
serial-correlation structure of the disturbances and/or about 
strict econometric exo^eneity are necessary in order to proceed 
with estimation." 

This is exactly the case which cannot be avoided here. 

Given the model, 

Y(t) = A(L)Y(t) + 0(L)W(t) + v(t), 

VK statistic = ( — \ * maximum periodogram 
^ 2(m-l)J sum of periodogram of p ordinates 

where k is the residuals degree of freedom in equation, and m is half of 
number of observations. 
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where v(t) is a normal vector with E(v v') = V. Let V = ̂  Z v v' be the 
^ ^ T t=l t c 

covariance matrix of v(t). Thus, the value of the likelihood functions is 

as follows: 

L(0) = -(1/2) mT log (2n) - (l/2)T{log|v| + m}, 
where m is the number of variates. For a smaller model maximizing L(6), 

or minimizing |v| with respect to all free parameter vector 0 is feasible. 
If L^ is the value of the likelihood function of its unrestricted maximum 

(no restriction across equation), and L^ is the value of the likelihood 

under restrictions of parameters underlying model, then -2 log^(L^/L ) is 

2 
asymptotically distributed as x (q) where q = q^ - q^ (q^ is the number of 

parameters to be estimated under unrestricted estimation, and q^ is the 

number of parameters to be estimated under the restricted estimation). 

The restriction imposed by the model is rejected if the likelihood ratio 

is high (approximation of likelihood ratio is T{log^|v^| - log^lv^j}). 

However, in a model such as this one, where there are fourteen variates 

and over twenty parameters to be discovered, jointly maximizing L(0) over 

all the parameters is not practical. Hence, an iterating-search procedure 

is used. 

The U.S. quarterly data from 1962 through 1977 is used with initial 

lagged values 1960 through 1961 being given. Detrending prior to the 

estimation is a device to isolate the indeterministic part from the 

deterministic parts of the series. The results from Fuller's and Granger-

causality tests have indicated certain knowledge on the processes of all 

variables and to those which can be used to gain information. 



www.manaraa.com

89 

Equation (4.60) can be written as: 

\+2 ^0 ''' ®l\+l ^2^®t+2 ®3^^t+l • • (5'G) 

From equation (4.44), Is: 

PSt+2 " PO + PI P^+1 + P2 PS^ + P3 + P4 A^_g + P5 P^+z 

+ P6 P_, + P7 P^ + PS P^ „ + P9 SCI + PIO PSC, 
t+1 t t-Z t+1 t 

+ Pll + P12 P0^+^ + P13 SBX^+2 + P14 

+ P15 SBC^ + P16 SBC^ , + P17 SBHF_ + PIS SBHF^ 
t t-1 t+1 t 

+ P19 SBHF^_^ +'P20 SBHC^+2 + P2Ï SBHC^+^B (5.7) 

Given that 

Pt+2 = ^St+2 + =t: (4.6) 

(I - X(L))SBX|.^2 = (5.8) 

Equation (4.61) can be written as: 

SBHF^+2 = F1 SBHF^^^ + F2 PS^+g + ̂3 PS^^^ + F4 PS^-FO (5.9) 

Equation (4.62) can be written as: 

«<=£+2 - =1 ̂ <=fH + «2 + 03 + G4 

05 PO^^^ + G6 PS|.^2 - G7 PS^^^^ (5.10) 

Equation (4.63) can be written as: 

SBC^+2 = HI + H2 PS^+2 + H3 PS^+^ + H4 PS^ (5.11) 

The market clearing price for soybean meal is: 

7 PSj. is a second-order autoregressive model; therefore, we need up to 
the first lag of PS^ in this equation. 

g 
SBHC's are assumed fixed and given. 

SB%t+2 ^l^®^t+l *2^B^t *3®®^t-l ^4^®^t-2 • 
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^"t+1 + ">2 ^°t+l + "3 ^®t+l + S^t+1 

m5 SC^ + m6 + m7 CORPF^^^ + m8 FIMP^^g (5.12) 

Where CORPF^^g and FIMF^^g have the following realized processes: 

(I - F(L))C0RPF^^2 = ^t+2' (5.13) 

(I - M(L)) FIMPj.^2 = ^t+2' (5.14) 

The market clearing price of soybean oil is: 

P°t+2 • +"1 f°t+l + + 03 + 04 

+ -5 SC|. + 06 SOU +07 COOP (5.15) 

and 

(I - 0(L))C00P^_J.2 = ^t+2' (5.16) 

Equations (5.8), (5.13), (5.14) and (5.16) are realized stochastic 

process of SBX, CORPF, FIMP and COOP, respectively. These variables are 

contained in the agent's information set, and they help to predict the 

stochastic shifts in the endogenous variables. The crucial assumption 

concerning these four variables is/that their processes are known or 

discovered. Each term is assumed to be independent and identically 

normally distributed. 

Equations (5.6), (5.7), (4.6), (5.8), (5.9), (5.10), (5.11), (5.12), 

(5.13), (5.14), (5.15), (5.16), (5.17) together with the SB, SM and SO 

equations and an identity of the soybean market, are estimated without 

restriction. The nonlinear estimation and simulation procedure in the 

SAS/ETS 79.6 version is used. Without any cross-equation restrictions on 

all parameters, they are the set of unrestricted models under the rational-

expectations hypothesis. This set of equations is called the Quasi-
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Rational model is derived from the Granger tests. If the cross-equation 

restriction is correctly specified, the restricted version, RES model, 

will out-perform the Quasi-Rational model. However, this is not generally 

the case. The highly nonlinear restriction imposed by the RES model 

creates multi-collinearity among those free parameters which have to be 

discovered. Omitting certain variables may result in getting a wrong sign 

for certain parameters. To this date, no satisfactory procedure exists to 

account for this problem. The results of the Quasi-Rational model are 

represented in Table 5.4.1 and 5.4.2. Certain variables which fail the 

bi-variate Granger test are included in the Quasi-Rational model if they 

pass the multi-variate Granger test. Results in Table 5.4.1 are the OLS 

estimates of the Quasi-Rational model. 

The sign of PS(t) in the A(t) equation is positive, as expected. 

The signs of PS(t) in SBHF(t) and SBC(t) are negative, as suggested by 

theory. The sign of PM(t), PO(t) and PS(t) are all as expected. The 

additional information which does not appear in the structural model but 

is used in the model is FIMP, CORPF and COOP. These three variables are 

used as the result of the Granger-causality test. 
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Table 5.4.1. The unrestricted estimation of the Quasi-Rational Expectations Model^ 

USE DW 

A(t) = 1.02 A(t-4) + 3.34 PS(t) - 2.89 PS(t-l) 1.75 0.99 2.0 
(0.01)b (0.41) (0.58) 

SBHF(t) = 0.39 SBHF(t-l) - 25.83 PS(t) + 18.55 PS(t-l) + 13.56 PS(t-2) 2924.0 0.91 2.02 
(0.13) (8.9) (12.14) (9.7) 

+389.16 Fall - 49.99 Winter - 110.8 Spring 
(26.0) (31.7) (14.6) 

SC(t) = 0.62 SC(t-l) + 0.35 PM(t) - 0.14 PM(t-l) + 3.12 PO(t) 106.9 0.75 1.67 
(0.1) (0.12) (0.14) (0.63) 

- 1.83 PO(t-l) - 23.6 PS(t) + 8.85 PS(t-l) + 1.03 Fall 
(0.86) (5.3) (5.47) (2.7) 

+9.47 Winter +2.31 Spring 
(2.6) (2.6) 

SBC(t) = 0.27 SBC(t-l) - 5.49 PS(t) - 13.5 PS(t-l) + 8.62 PS(t-2) 4435.0 0.90 2.04 
(0.14) (11.0) (14.2) (10.9) 

+ 305.01 Fall + 12.84 Winter - 100.6 Spring 
(38.7) (38.2) (20.17) 

^All variables in soybean acreage equation are multiplied by the quarterly dummy variable zero-
one — one in planting quarter and zero otherwise. 

^Standard deviation. 
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Table 5.4.1 - continued 

MSB DW 

PS(t) = 0.37 PS(t-l) + 0.02 PS(t-2) + 1.08 P(t) - 0.47 P(t-l) 0.01 0.99 2.01 
(0.19) (0.18) (0.02) (0.21) 

+ 0.07 P(t-2) + 0.04 P(t-4) + 0.001 PM(t-l) - 0.006 PG(t-l) 
(0.21) (0.03) (0.001) (0.004) 

- 0.011 A(t-6)*Dumniy + 0.009 A(t-10)*Dunmiy - 0.00002 SC(t-l) + 0.002 SC(t-2) 
(0.01) (0.01) (0.002) (0.002) 

- 0.0001 SBC(t-l) - 0.0001 SBC(t-2) - 0.0003 SBC(t-3) 
(0.0003) (0.0002) (0.0003) 

- 0.00003 SBHF(t-l) - 0.0001 SBHF(t-2) + 0.000003 SBHF(t-3) 
(0.0003) (0.0003) (0.0003) 

- 0.0006 SBX + 0.0004 SBHC(t) + 0.0003 SBHC(t-l); where P(t) = 0.95%*PS(t) 
(0.001) (0.0004) (0.0004) 

PM(t) = 0.42 PM(t-l) + 0.59 PO(t-l) + 2.27 PS(t-l) + 0.39 SC(t-l) 148.7 0.93 1.73 
(0.35) (1.15) (10.4) (0.17) 

+ 0.16 SC(t-2) + 0.061 SMH(t-l) + 0.49 FIMP(t) - 0.13 FIMP(t-l) 
(0.15) (0.06) (0.14) 

- 0.15 FIMP(t-2) + 0.002 FIMP(t-3) + 19.05 CORPF(t) - 57.3 CORPF(t-l) 
(0.1) (0.07) (12.6) (16.3) 

+ 14.65 C0RPF(t-2) + 17.85 C0RPF(t-3) 
(15.8) (10.6) 
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Table 5.4.1 - continued 

MSE DW 

PO(t) = 0.44 PO(t-l) + 0.047 PM(t-l) - 1.48 PS(t-l) + 0.004 SC(t-l) 7.74 0.85 2.2 
(0.26) (0.04) (2.0) (0.042) 

+ 0.0077 SC(t-2) + 0.0002 SOH(t-l) + 0.62 COOP(t) + 0.06 COGP(t-l) 
(0.03) (0.002) (0.17) (0.18) 

+ 0.26 C00P(t-2) - 0.22 C00P(t-3) 
(0.15) (0.13) 
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The h-statist±c SC(-t) is 1.72 which means that we reject the 

zero autocorrelation at the five percent level of significant. 

Therefore, the first-order autocorrelation model is imposed to SC(t). 

Table 5.4.2 is the result of the unrestricted estimation of the model. 

The model is run under seemingly unrelated regression. The results of 

the estimation are reported in Table 5.4.2. Using the likelihood ratio 

test the model in Table 5.4.1 is tested against the model in Table 

5.4.2. We reject the model in Table 5.4.1. Thus, there exists serial 

correlation in SC. 

Restricted estimation under the rational expectation hypothesis 

There are nine underlying parameters to be discovered. They are 

gO, gl, g2, g3, dl, d2, d3, d4, and g. We assume that the discount 

factors "b" and "6" are 0.99 and 0.9, respectively. We also assume 

that soybean meal yield and soybean oil yield (somsc and soosc) are 

0.487 and 0.108, respectively, and the adjustment factor for. soybean 

yield (y) is 0.98*yield. The discount factor "6" is assumed to be 

lower than "b", implying that soybean processors have a higher rate of 

return than farmers. Whether these assumptions are realistic is left 

for further research. 

10 
Let r = 1-0.5*DW, n = number of observations 
Var(bl) = variance of lagged endogenous variable, then 

h = r(n/1-nVar(b1))^ ̂ ̂. 
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Table 5.4.2. The unrestricted estimation of Quasi-Rational Expectations 
model - using seemingly unrelated regressions 

MSE • DW 

A(t) = 1.02 A(t-4) + 3.36 PS(t) - 2.88 PS(t-l) 1.75 0.99 2.0 
(0.01) (0.39) (0.55) 

SBHF(t) = 0.32 SBHF(t-l) - 27.17 PS(t) 2956.0 0.91 1.86 
(0.11) (8.7) 

+ 15.02 PS(t-l) + 16.6 PS(t-2) 
(11.7) (9.1) 

+ 278.69 Fall + 32.99 Winter - 110.6 Spring 
(23.3) (28.3) (13.8) 

SC(t) = 0.08 SC(t-l) + 0.32 PM(t) + 0.11 PM(t-l) 98.4 0.78 2.13 
(0.14) (0.09) (0.14) 

+ 2.23 PO(t) + 0.24 PO(t-l) - 21.2 PS(t) 
(0.62) (0.7) (4.4) 

- 9.12 PS(t-l) - 2.5 Fall +5.8 Winter 
(5.2) (2.1) (1.9) 

+ 5.04 Spring; where P = 0.70 
(1.9) (0.12) 

SBC(t) = 0.15 SBC(t-l) - 6.86 PS(t) 4518.0 0.89 1.75 
(0.13) (10.8) 

- 14.4 PS(t-l) + 7.45 PS(t-2) + 275.65 Fall 
(13.9) (10.7) (35.0) 

+ 39.18 Winter - 86.5 Spring 
(34.8) (18.9) 
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As mentioned earlier, the superior procedure to solve for the free 

parameters - nine underlying parameters and those which are character­

ized by the realization of exogenous variables (coefficients of auto-

regressive models of exogenous variables), is to solve the nonlinear 

system of thirteen equations with cross-equation restrictions simul­

taneously (assuming that SBHC is given fixed). 

This procedure, however, is very expensive. Thus, the estimation 

is constralnted by the computer cost. Nonlinear joint generalized least 

squares are run on the model. Using PROG SYSNLIN in SAS/ETS 79.6 

version, the underlying parameters can be discovered. The problems 

concerning the estimation are that the system may not be easy to 

converge and it generally takes time to solve the system. If the system 

is successfully solved, all necessary statistics can be obtained from 

the PROG SYSNLIN. Simulation can also be done simultaneously with 

estimation by using PROG SIMNLIN, providing that there are no missing 

data. The estimates of all underlying parameters are reported in Table 

5.5.1. Some negative values may be due to omitted variables - and 

misspecify the model. 

The adjustment cost parameters - dl, d4, gl, and g3, are all 

positive as expected. The higher the values of these variables, the 

slower the speed of adjustment of soybean acreage planted, soybean 

inventory on-farm, soybean crushed and soybean inventory off-farm. 

The values of lagged choice variables depend upon these adjustment 

costs (as shown in Ghapter four). 
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Table 5.5.1. Estimates of parameters of the soybean model (RES model)^ 

GO = 0.4558 D1 = 8.12 
(18.9) (0.01)* 

G1 = 16.75 D2 = 2972.89 
(997) (7920) 

G2 = -1109.2 D3 = -0.0056 
(3259) (0.03) 

G3 = 0.0007 D4 = 110.01 
(0.0004)** (273) 

0 = 0.96 
(0.01)* 

The logg of the determinant of variance-covariance matrix is 13.95. 

^The following parameters are assumed priori: 

b = 0.99 somsc = 0.487 
Ô = 0.9 soosc = 0.108. 

*Slgnifleant at oi = 0.05. 

**Signifleant at a = 0.10. 
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The negative values of and may be due to misspecification in 

the model. Using the approximated value of likelihood ratio 

ïj^log^l V^l - loggj V^l j, the value of likelihood ratio is 222.5, which is 

very high. Thus, we reject the restricted model. Given the results of 

the test, one should go back to the structural model and reformulate it. 

Certain improvements can be made through incorporating the other crop 

such as com. Other inputs such as fertilizers and machinery may be taken 

into consideration. Of course, these revisions will add more complication 

to the model. Due to high computation costs, further implications under 

the RES model will not be performed. Only the Quasi-Rational model is 

used for dynamic simulation in Chapter six. 

Given the results in Table 5.5.1 and Table 5.4.2, the structural de­

cision rules can be written as in Table 5.5.2. The assumptions made 

the farmers' discount factor being 0.99, the processors' discount factor 

being 0.9, and the soybean adjustment factor yield being 0.98*yield. The 

higher the soybean yield per harvested acre, the higher the coefficient of 

the expected future prices. The higher the yield, the higher the profit 

opportunities for farmers. The coefficient has the inverse relationship 

with the underlying parameter D^. The higher the parameter (higher 

adjustment cost), the lower the coefficient of the future price and lower 

the speed of adjustment of soybean acreage planted. 

The coefficient of the expected price change in the soybean inventory 

on-farm (SBHF^) depends upon the parameter D4 (the adjustment cost parame­

ter). The higher the parameter D4, the lower the price coefficient and 

the lower the speed of adjustment of the inventory on-farm. 
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Table 5.5.2. The structural decision rules of the soybean market 

Aj. = + (0.1182*yield) Z (0.99)^1 0.96 E(PS^_^2+4i> 
1=0 

CO 

SBHF = 0.382 SBHF + (0.0035) Z  (0.378)^ [0.99 E(PS_ . _) - E(PS_.)] 
L t X ^ _Q t* 

00 CO , 
SC = 0.63 SC , + 0.037 ** Z (0.563)^ E(PM ) + 0.037 * soosc Z (0.563)^ E(PO ) 

t t i zv t+i 1=0 

1 
- 0.037 Z (0.563) E(PS ) 

i=0 

SBC = 0.021 SC , + 44.28 S (0.0189)^ [0.9 E(PS^_ _) - E(PS_^.)] 
t t—i ^_Q t+x+x t+x 
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The coefficient "0.037" in the soybean crushed also depends upon the 

adjustment cost parameter g^. The higher the adjustment cost parameter, 

the lower the coefficient and the lower the speed of adjustment of the 

soybean crushed. 

The interpretation on the coefficient of the price change in the 

soybean inventory off-farm (SBC^) is the same as SBHF^. The negative 

values of and may imply "reward" concerning crushing, holding 

inventory on-farm and off-farm; however, this is difficult to interpret. 

Estimation of adaptive expectation hypothesis 

The infinite lagged length of PS, PM and PC can be replaced with 

finite lagged length by using the Koyck transformation. 

Table 5.6 is the estimated equations of the Adaptive Price 

Expectations model. The lagged prices are proxies of anticipatory future 

prices. Seasonal dummy variables are added to the equations in order to 

take care of seasonality in time series. No additional information is 

used. All coefficients are estimated without any restrictions as in the 

rational-expectation version. The average coefficients of lagged price PS 

in soybean acreage equation (A^) are positive. The positive lagged price 

in this acreage response implies the cobweb phenomenon in supply function. 

The sign of the current price of soybeans in both stock equations are 

negative as expected. The sign of the lagged value of the soybean price 

should be positive; however, this is not the case of the off-farm inventory 

equation. The signs in the crushing equation are not as expected. 
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Table 5.6. Estimation equations under Adaptive Expectations Hypothesis^ 

MSE DW 

\ - 8  
PS^ fSt-1 PSt-2 fSt-3 

1.2929 
(0.13)^ 

-0.21 
(0.13) 

1.19 
(0.71) 

3.41 
(1.95) 

0.16 
(1.08) 

-3.05 
(0.5) 

0. 88 0. 99 2. 0 

SBHF^ , 
t—1 SBHFj._2 PSt PSt-1 Fall Winter Spring 

0.43 
(0.13) 

-0.004 
(0.13) 

-29.94 
(9.6) 

33.15 
(9.6) 

281.99 
(24.5 ) 

-51.52 
(45.66) 

-108.36 
(30.49) 

3402. 0 0. 89 2. 26 

SCt-1 SCt_2 ™t-l POt-1 PSt-1 Fall Winter Spring 

0.92 
(0.17) 

-0.33 
(0.13) 

-0.34 
(0.14) 

-1.8 
(0.7) 

12.5 
(6.7) 

7.66 
(3.3) 

8.45 
(3.01) 

-2.82 
(3.12) 

145. 7 0. 62 1. 81 

SBCt.i SBCt_2 PS^ PSt-1 Fall Winter Spring 

0.20 
(0.14) 

0.06 
(0.14) 

-9.37 
(10.8) 

—3.6 
(11.0) 

283.5 
(36.2) 

48.6 
(53.2) 

-108.0 
(35.6) 

4460. .0 0, .89 1. .95 

The weighted MSE of 
system = 8.0 

^All variables in soybean acreage equation are multiplied by quarterly dummy variable — one 
in planting quarter and zero otherwise. 

^Standard deviation. 
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The Figures 5.5 through 5.8 illustrate the simulation result of the 

Adaptive model over the sample period. 

Estimation- of Cash-Futures Price Expectations Model 

There are certain clarifications concerning data in the futures 

market which have to be pointed out. As mentioned earlier, all data in 

this research are based upon the crop year of soybeans, soybean meal and 

soybean oil (September through August for soybean and October through 

September for soybean meal and oil). The rearrangement also has to be 

done for the futures-prices data. All futures-prices data are reported 

according to trading years, which start from different months according to 

monthly delivery. The November contract (harvested contract) for soybean 

and December contract for soybean meal and oil are used here. 

The quarterly average futures prices of soybeans are computed from 

the high and low monthly average of the quarter. For example, the soybean" 

average futures prices for the first quarter of crop year 1970 (September, 

October and November 1970) are the high-low monthly average of soybean 

November 1970 contract, and the soybean average futures prices for the 

second quarter (December 1970 - January and February 1971) are the high-

low monthly average of soybean November 1971 contract. Although the pro­

cesses of the futures prices of beans, meal and oil are not assumed, we 

compute the autoregressive model of PSF, POF and PMF in Table B.5 in 

Appendix B. Comparing the mean square errors of the same processes in 

Table 5.1 and B.5, it is seen that cash prices of beans, meal and oil have 

higher mean square errors. We realize that the cash and futures prices 

are created from different stochastic processes; comparing the mean square 
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Figure 5.5. Estimated and actual values of soybean acreage planted 
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Figure 5.7. Estimated and actual values of soybean inventory on-fart. 
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Figure 5.8. Estimated and actual values of soybean inventory off—farm 
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errors by no means implies anything about the process of the two price 

categories. 

Using Koyck transformation on the one period forward on SBHF^, > 

SC^ and SBC^, we can eliminate the infinite sum in equations (4.70) 

through (4.73) and obtain the operational version of (4.70) through 

(4.73). Table 5.7 presents the results of the OLS estimates of the cash-

futures price model. 

The positive sign on PSF^ in the soybean acreage function implies 

that farmers will grow more beans if they expect a higher price at harvest 

time. This result is what we expect. The positive sign of is 

expected. The positive sign of reflects the positive value of 

parameter in the rational-expectations model, which implies the speed 

of adjustment of soybean acreage planted. Although there is no a priori 

belief in the adaptive and cash-futures models for the sign of A^_^, the 

positive result is matched with our theory and farmers' practices. 

The lag of soybean inventory on-farm (SBHF^) has a positive sign in 

all three models. This is what we expect. The sign of in the RES 

model depends upon the sign of the parameter D^, which is also positive. 

The sign of ^ (soybean futures price quotes at t for t+2 

contract - harvesting period) is positive as we expect. The higher the 

harvested price, the more likely farmers will plant soybeans. One also 

expects the sign of PSF^^^ j. and PSF^_^2 Co be positive in the off-farm 

inventory equation. The signs of all prices in crushing and off-farm 

inventory are not as expected. 
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Table 5.7. Estimates of cash-futures price expectations model* 

V4 

0.7758 
(0.12)b 

\-a 
0.28 
(0.13) 

0.024 
(0.05) 

SBHFj. : 

0.32 
(0.12) 

SBHF^-2 

-0.17 
(0.12) 

-5.42 
(1.9) 

SC^: SCt-1 SCt-2 ^°^t+2,t-l 

0.73 -0.25 1.13 -0.84 
(0.13) (0.13) (13.7) (1.6) 

SBCj.: SBCt-1 SBCt_2 ^®^t+2,t-l Fall 

0.14 -0.05 -3.44 -17.6 252.11 
(0.13) (0.13) (2.04) (9.3) (31.6) 

*A11 variables are filtered by linear trend, and, as usual, all 
variables in soybean acreage planted equations are multiplied by quarterly 
dummy variable — having value one in planting quarter and zero otherwise. 

'^Standard errors. 
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MSE DW 

PSF 

PMF 

t+2,t-l 

13.49 
(7.9) 

t+2,t-l 

-0.06 
(0.32) 

Winter 

35.53 
(45.7) 

Fall Winter Spring 

246.4 -51.5 -71.6 
(24.1) (40.3) (28.9) 

Fall Winter Spring 

6.14 8.41 -2.69 
(3.2) (3.01) (3.02) 

Spring 

-77.27 
(31.68) 

3599.0 0.87 1.92 

157.7 0.58 1.92 

4451.0 0.88 1.90 
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Ill 

The predicted values of A^, SBHF^, SC^ and SBC^ from Table 5.7 are 

not promising. Had we applied the same technique as in the rational 

expectations hypothesis to the cash-futures prices model, we certainly 

will improve the model. This is left for further research. 

Concerning the implication of the model in Chapter six, only the 

Quasi-Rational model will be used for a dynamic simulation. 
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CHAPTER 6. IMPLICATIONS AND CONCLUSIONS 

The theoretical derivation and estimation of the soybean model under 

the three price-expectation regimes have been presented in Chapters four 

and five. The rational-expectations model implies that agents who have a 

correct perception of market behavior will out-perform those who do not. 

There are, however, drawbacks encountered in this research. 

First, gathering and processing information is costly. For example, 

the estimation of the restricted model (RES) is more expensive than the 

other models. The cost of estimating such a model increases proportion­

ally with the complexity of the model. Second, if there is a structural 

change in the economy, it may take a number of quarters for the model to 

converge to "rational-expectations equilibrium". In one lifetime, we may 

never see the model converge to such an equilibrium. Although we cannot 

deny that, one can gain a great deal from the model. 

Some suggestions for further research are: 

(i) incorporating corn as a competing crop, and 

(ii) modeling the demand for soybean meal and soybean oil. 

Certainly, this suggestion will add more complications to the model. To 

solve the model such as suggested, the restricted estimation procedure is 

not practical. A quasi-rational-expectations version is practical, 

however. 

Given the structural decision rules in Table 5.5.2, the elasticities 

of the four decision variables at "time t" with respect to the expected 

price of soybeans E(PS^^^) can be obtained as the following: 
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(i) Elasticity of soybean acreage planted at t with respect to the 

expected price of soybean E(PS^^^), 

e(A( t ) ,  E ( P S ^ ^ 2 0  =  0 . 2 4  

yield = 30, PS = 5, acre = 70 

(ii) Elasticity of soybean inventory on-farm at t with respect to 

the change in soybean price at t+1. 

e(sBHF(t), APS|.^J = 0.00002 

(iii) Elasticity of soybean crush at time t with respect to the 

expected price of soybean meal, oil and soybeans, 

e(sC(t), E(PM^)) = 0.0006 

e^SC(t), E(PO^)) = 0.0004 

e^C(t), E(PS^)) = -0.001 

(iv) . Elasticity of soybean inventory off-farm at t with respect to 

the expected price of soybeans at t+1 

e^SBC(t), E(PSj.^j^)) = 0.67, and 

e(sBC(t), PS(t)^ = -0.68 

All these elasticities depend upon the underlying parameters, such as 

adjustment cost parameters, discount factors, and adjustment factors for 

yield. We expect that the higher the adjustment factor for yield, the 

higher the elasticity e^(t), E(PS^^^)), and the higher the adjustment 

cost, the lower the elasticities for the four decision variables. 

Given the Quasi-Rational model, a dynamic simulation is performed 

over the sampling period. Using the structural relationships in Chapter 

four, some variables, such as soybean price received by farmers (P^), 
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soybean production (SB^), soybean meal production (SM^) and soybean oil 

production (SO^) can be computed. 

Figure 6.1 is the result of the predicted values of the soybean price 

(PS) from the dynamic simulation of the Quasi-Rational model. The pre­

dicted values are plotted against time (the first quarter of the crop year 

1968 through the last quarter of the crop year 1977). The statistics 

which we use to measure the simulation performance are the percentage root 

mean-square error (% RMSE) and the turning point error (TPE). The 

% RMSE for PS is 0.02, and TPE is 0.04. These figures indicate good per­

formance for PS. Unfortunately, we are not able to get good results of 

the simulation on the restrictive model. The rejection of the restrictive 

model certainly indicates that we may have wrong cross-equation restric­

tions. Further research is needed to improve the formulation and estima­

tion of the model and to incorporate corn and other important variables in 

the model. 

There is also a problem of detrending, which is used in the estimation 

procedures that may affect the result of the simulation. The OLS estimate 

of trend is static and deterministic. The time series used in this 

research may "drift" downward and/or upward over time. If they are drift­

ing, they possess stochastic properties which must be expressed as the 

outcome of a process operating through time. It is very difficult, in 

fact, to tell whether time series possess deterministic trend or stachastic 

drift. If we model deterministically, when it is stochastic, we may make 

serious errors in the prediction of future values. To deal with stochastic 

drift certainly is a difficult task. 
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The purpose of undertaking this research is to strengthen the 

relationships between economic theory of expectations and econometric 

practice. The economic time series interpretation approach in this 

research is the new breed in modelling econometric models. Although there 

is room to improve the results obtained from this research, the attempt is 

accomplished for the present purpose. 
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APPENDIX A. DERIVATION OF OPTIMAL DECISION RULES 

Z y  j'o - (T) "t+j 

- («'«("t+j - "> 

Differentiating (1) with respect to n̂ ^̂ , j =0, 1, 2 ... N-1, and setting 

each derivative equal to zero gives the system of stochastic Euler 

equations 

GGt+j*t+j+l **t+j *t+j-l (?) ̂"t+j " ̂t+j " To) 

j = 0, 1, 2 ... N-1 (2) 

where (j, = -((ŷ /G) +1 + 3) 

The transversality condition is 

lim E|.e [Yq + - ŵ ^̂  - " "̂ "̂t+N " "̂ t+N-l̂  ̂ ° 
N-̂  

Using the backward operator "L", the characteristic polynomial of (2) is: 

(l + (̂ ) L + (j) hj = (1 - P]L)(1 - PgL) 

where 0 < < 1 and p̂  = 

Thus, (1 - p̂ L)(l - PgUn̂  = ̂  Ec(Wc_i " " Yq) (4) 

or 

(1, - P]L)nt = (06)-l Y-ẑ  - St-l " ̂0̂  

-1 (92̂ )"̂  
= -(**) : Ec("c_i - ̂ -1 - YQ) 

1 - (PgL) 
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1 
(1 - p̂ Dn̂  = - ̂  (BPi) ZÏ Ec(Wt_i - ac_i " Yq) 

1 - (PgL) 

1 - (PgL) 
Zï\(̂  ̂ - a, - YQ) 

Thus, the unique solution of the Euler equations that satisfied the 

transversality condition is 

"t • "iVi - (t) /"wj - 'wj - Yo'l  ̂ «) 

To get the decision rule for n̂  in an explicit form, we need to assume the 

representative of and . 

Let U = (1, 0, 0, ...) of order (Ixp) 

 ̂= Vt-1 •*•••• Vt-q + \ 

- "iVl - Vt-q ° \ 

(1 - (x̂ L - oî L̂  - otqL̂ ) â  = or (7) 

a(l)â  = or (8) 

= a(L) (9) 

Note that equation (8) and (9) imply the invertibility of a . 

In summary, we can write â  as: 

â . = a(L) = t|;(L)v̂  = Z (10) 
j=0 J J c 

Let Wj. be the first element of a vector X̂ , which has the following 

process ; 
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or 

or 

Thus, 

" ̂ l̂ t-1 " ̂ 2̂ t-2 " ̂r*t-r ~ 

(1 - ê L - Ggl̂  - = V* 

e(L)Xj. = V* = G(L)'̂ Xj. 

Xj. = e(L) = G(L)v* = 
Jo 

From (5) we can write it as: 

"t -"iVi - (-fj U Z (X)̂ Ê X̂ ,. - Z (A)̂ E,a 
L j=o t"t+j jig -t t+j 

where Yq is assumed to equal zero. 

Note that 

Thus, ll 2 (̂ )̂E,X = E (Â ) 
k=0  ̂ k=0 ij=k 

= $(L)v* where 

00 CO 

$(L) = Z Z A'̂ G. L̂ L"̂  
k=0 j=k  ̂

= Z Z Â G.!̂ !""̂  
j=0 k=0  ̂

= Z G.L̂  Z A\~̂  
j =0  ̂ k=0 

= Z G.Lj[l - Â "̂ V̂ "̂ )/(] - AL"̂ ] 
j=o J 

« 4 _1 w 4 -.1 
= ( I G.L̂  - AL 2 G X )̂/(l - AL 

j=0  ̂ j=0 j 

= (G(L) - AL"̂ G(A))/(1 - AL"̂ ) 

(11) 

(12) 

(13) 

(14) 

(15) 
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Thus, r X̂ EX = [(G(L) - XL"̂ G(A))/(1 - XL"̂ )]v̂  
k=0 " ^ 

= [(G(L) - XL"̂ G(X))/(1 - XL"̂ )]G(L)"̂ Xj. 

= [(I - L"^XG(X)G(L)"^)/(I - XL"^)]Xj. 

= [(I - L"̂ Xe(X)"̂ E(L))/(l - XL'̂ )]x  ̂ (16) 

Let have r*"̂  order of autoregressive representative as in (12), thus: 

e(L)/(l - XL"̂ ) = [-ê L^ - . gL + I]/(1-XL"^) 

= -e L̂̂  - (ê _̂  + Xê )L̂  ̂  

+ (I - Xê  - X'̂ ep/d - XL'l) 

Thus, L"̂ Xe(X)"̂ e(L)/(l-XL"̂ ) = L"He(X)"̂ [-ê L̂ -(ê _̂ +XÊ )L̂ "̂  " 

+ L~hl/(1 - X]L"̂ ) 

Thus, (I-L~^Xe(X"^)e(L))/(1-XL"^) = l"^Xe(X)~^[+£^l'^+(e^_^+Xe^)l'^"^ 

- L"̂ XI/(I-XL"̂ ) + I/(1-XL"̂ ) 

= I  + E(X)"^[Xe^L'^"^ + (A£^_^ + X^e^)L^"^+.. (Xe^ + X^gg ...X^G^)] 

= e(X) ^[E(X) + (XE^ + X^^2 . ..X^E^) 

+ Xe^L^"^ + (XG _̂i + X^e^)L'^~^ + . .. (Xe^ + X^e + ...X^"^E^)L] 

= g(X)"^[I + (XGg + X^Eg + ...X^"^E^)L 

+  . . .  +  ( A ê _̂  + X̂ Ĝ )L̂ "̂  + XÊ L'̂ "̂ ] 

r-l r 
= E(X)"-^[I + E ( E X "J e, )L^] (17) 

j=l k=j+l 
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Using analogous, we get 

and 

2 a)̂ E (a ) = [(I - L"̂ A(x(A)"̂ a(L))/(l - XL ]â  (18) 
k=0  ̂

[I-rta(X)"̂ a(L)]/(l-AL"̂ ) = aCX)"̂  lA ( 2 )L̂ 1 (19) 
j=l k=j+l J 

Thus, the explicit form of decision rule for n̂  is: 

q-1 / 
I + E [ E X̂ ~̂  (20) 

j=l k=j+l t 

where E(L)x̂  = v* 

a(L)a = 
C' L 
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APPENDIX B. UNIT ROOT AND GRANGER-CAUSALITY TEST RESULTS 
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Table B.l. A unit root test of endogenous variables adjusting with linear trend 

5 
Model: Y(t) = C + a(l)Y(t-l) + Z yD. + e 

i=l  ̂̂  

where = Y(t-i) - Y(t-i-l) for i = 1, 2, 3, 4, 5 

Y(t) C a(l) Yd) 7(2) Y(3) Y (4) Y (5) T MSB 

A -0.007 
(2.3) 

-0.34 
(0.12) 

-11.5* 354.6 

A -0.42 
(0.3) 

-3.03 
(0.05) 

2.03 
(0.04) 

-80.6* 271.4 

A -0.09 
(0.21) 

0.175 
(0.3) 

0.38 
(0.23) 

-0.61 
(0.15) 

-0.82 
(0.08) 

- 2,75 2.97 

SBHF^ -6.17 
(20.9) 

-0.08 
(0.12) 

- 9.* 33,000. 

SBHFj. -11.22 
(18.3) 

-0.63 
(0.15) 

0.5 
(0.10) 

- 10.9* 25,000. 

SBHF^ -18.37 
(17.18) 

-1.28 
(0.23) 

0.96 
(0.16) 

0.39 
(0.11) 

_ 9.9* 21,727. 

SBHF^ -1.07 
(9.2) 

0.69 
(0.19) 

-0.69 
(0.15) 

-0.77 
(0.11) 

-0.88 
(0.06) 

_ 1.6 6,145. 

Ŝignificance at a = 0.05. 
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Table B.l - continued 

5 
Model: Y(t) = C + a(l)Y(t-l) + E Y.D. + e 

i=l  ̂̂  

where = Y(t-i) - Y(t-i-l) for i = 1, 2, 3, 4, 5 

Y(t) C a(l) Y(1) Y(2) Y(3) Y(4) Y(5) T MSE 

SBHF̂  -5.39 
(7.01) 

0.40 
(0.15) 

0.15 
(0.16) 

-0,003 
(0,13) 

-0.189 
(0.11) 

0.69 
(0.09) 

-4.0* 3,522, 

SBHF̂  -3.07 
(6.9) 

0.58 
(0.17) 

0,14 
(0.15) 

-0.22 
(0.16) 

-0.36 
(0.13) 

0.56 
(0.11) 

-0.26 
(0.13) 

-2.47 3,364. 

SBC -2.82 
(22.02) 

-0.14 
(0.11) 

-10.4* 36,370. 

SBC -5.4 
(18.7) 

-0.75 
(0.15) 

0.54 
(0.09) 

-11.6* 26,234. 

SBC -10.8 
(16.7) 

-1.59 
(0,23) 

1.12 
(0,16) 

0.48 
(0.11) 

-11.3* 20,767. 

SBC 0.68 
(8.4) 

0,67 
(0.19) 

-0.73 
(0.15) 

-0.82 
(0.10) 

-0.89 
(0.06) 

-1.74 5,239. 

SBC -1.79 
(7.4) 

0.48 
(0.17) 

-0,12 
(0.19) 

-0.25 
(0.15) 

-0.36 
(0.13) 

0.49 
(0.11) 

-3.06 4,088. 

SBC -2,41 
(7.5) 

0.42 
(0,19) 

-0,11 
(0,19) 

-0.15 
(0.19) 

-0.29 
(0.16) 

0.59 
(0.14) 

0.09 
(0.13) 

-3.41* 4,118. 
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Table B.l - continued 

5 
Model: Y(t) = C + a(l)Y(t-l) + E .D + e 

1=1  ̂  ̂

where = Y(t-i) - Y(t-i-l) for 1 = 1, 2, 3, 4, 5 

Y(t) C 0(1) Y(1) Y(2) Y(3) Y(4) Y(5) T MSE 

PM -0.49 
(2.85) 

0.75 
(0.08) 

-  3.125 552 

PM 0.45 
(2.7) 

0.68 
(0.08) 

0,28 
(0.12) 

- 4,0* 515. 

PM -0.44 
(2.77) 

0.67 
(0.09) 

0.28 
(0.12) 

0.04 
(0.12) 

- 3.67* 522, 

PM -0,43 
(2.79) 

0.65 
(0.1) 

0.29 
(0.12) 

0.04 
(0.12) 

0.05 
(0.12) 

— 3,46* 529, 

PO -0,08 0.82 - 2,57 10,4 

PO -.08 
(0.39) 

0.81 
(0.07) 

0.4 
(0,12) 

- 2.7 10,5 

PO -0.07 
(0.39) 

0.79 
(0.07) 

0,05 
(0.12) 

0.17 
(0.12) 

- 3,0 10,4 

PO -0,07 
(0.39) 

0.77 
(0.07) 

0.06 
(0.12) 

0.17 
(0.12) 

0.07 
(0.12) 

- 3.28* 10,5 

PS -0.02 
(0.09) 

0,72 
(0,08) 

- 3.3 0,63 
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Table B.l - continued 

5 
Model: Y(t) = C + (l)Y(t-l) + Z y.D. + e 

i=l  ̂̂   ̂

where: = Y(t-i) - Y(t-i-l) for i = 1, 2, 3, 4, 5 

Y(t) C a(l) Y(1) Y(2) YC3) Y(4) Y(5) T MSE 

PS -0.025 
(0.09) 

0.69 
(0.09) 

0.126 
(0.12) 

-3.49* 0.63 

se -0.07 
(1.81) 

0.46 
(0.11) 

-4.9* 223.8 

se -0.27 0.23 0.44 -6.59* 185. 

se -0.21 
(1.65) 

0.32 
(0.15) 

0.4 
(0.12) 

-0.12 
(0.13) 

-4.5* 185. 
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Table B .2. A unit root test of exogenous variables (all variables are adjusted with linear trend) 

Model; X(t) = 

where 

= C + B(l)X(t-l) + + YgDĝ  + YgD̂  ̂+ Ŷ D̂  ̂+ YgOĝ  + 

Dit = X(t-i) - X(t-i-l) for i = 1, 2, 3, 4, 5 

X(t) C a(l) YD) Y(2) Y(3) Y(4) Y(5) % MSE 

SBX -0.426 -0.128 -9.4* 616.09 
(3.01) (0.12) 

• 

SBX -0.65 -rO.33 0.18 -7.38* 606.2 
(2.99) (0.18) (0.12) 

SBX -0.016 0.24 -0.26 -0.33 -0.58 -2.62 389.8 
(2.41) (0.29) (0.24) (0.18) (0.11) 

-1.96 0.038 
CORPF -0.009 0.89 

(0.02) (0.056) 

CORPF -0.009 0.88 0.02 -2.07 0.038 
(0.02) (0.06) (0.12) 

CORPF -0.009 0.88 0.03 0.03 -2.0 -.039 
(0.02) (0.06) (0.12) (0.13) 

CORPF -0.007 0.86 0.04 0.04 0.18 -2.33 0.038 
(0.02) (0.06) (0.12) (0.12) (0.12) 

SMX -37.2 0.27 -4.05* 145,161. 
(41.6) (0.18) 

*Significance at a = 0.05. 
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Table B.2 - continued 

Model: X(t) = C + (l)X(t-l) + + ŷ 3°3t 4̂°4t 5̂°5t + 

where = X(t-i) - X(t-i-l) for i = 1, 2, 3, 4, 5 

X(t) C a(l) Y(l) Y(2) Y(3) Y(4) Y(5) T MSE 

SMX -40.2 
(36.) 

-0.34 
(0.2) 

0.79 
(0.16) 

-6.7* 114,375. 

SMX -33.4 
(35.5) 

0.4 
(0.32) 

0.15 
(0.28) 

-0.62 
(0.2) 

-0.34 
(0.18) 

-1.9 105,385. 

HPAU -.25 
(0.19) 

-0.48 
(0.11) 

0.73 
(0.08) 

-12.9* 2.46 

HPAU -0.05 
(0.09) 

0.70 
(0.1) 

0.11 
(0.13) 

-0.29 
(0.13) 

-0.03 
(0.11) 

0.54 
(0.11) 

-2.97 0.51 

HPAU -0.04 
(0.09) 

0.69 
(0.11) 

0.11 
(0.14) 

-0.28 
(0.14) 

-0.01 
(0.13) 

0.55 
(0.11) 

6.026 
(0.13) 

-2.82 0.52 

FIMP -1.07 
(4.4) 

0.77 
(0.07) 

0.34 
(0.12) 

-3.28 1,336. 

FIMP -0.97 
(4.2) 

0.66 
(0.07) 

0.35 
(0.11) 

0.14 
(0.12) 

0.32 
(0.12) 

—4.86* 1,205. 

SOH -22.6 
(37.3) 

0.41 
(0.13) 

-4.26* 116,644. 

SOH -29.44 
(36.7) 

0.289 
(0.15) 

0.54 
(0.27) 

-4.76* 112,678. 
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Table B.2 - continued 

Model: X(t) = C + 3(l)x(t-l) + Yj °lt + 72% '2t + ̂3°3t + ̂4°4t + 

where = X(t-•i) - X(t-1-1) for 1=1, 2, 3, 4, 5 

X(t) C a(l) Y(I) Y(2) Y(3) Y(4) Y(5) T MSE 

SOH -29.8 
(37.1) 

0.278 
(0.17) 

0-54 
(0.27) 

0.04 
(0.28) 

-4.27 114,054. 

SOH -23.5 
(36.4) 

0.44 
(0.18) 

0.38 
(0.3) 

0.008 
(0.28) 

-0.58 
(0.28) 

-3.11 109,451. 

SMH -15.65 
(15.8) 

1.03 
(0.19) 

-0.16 21,018. 

SMH -15.37 
(15.8) 

0.99 
(O.o9) 

0.216 
(0.34) 

-0.05 21,172. 

SOX -17.3 
(18.2) 

0.83 
(0.2) 

0.4 
(0.2) 

-0.4 
(0.2) 

0.34 
(0.2) 

-0.85 28,030. 

COOP -0.09 
(0.41) 

0.74 
(0.08) 

• 
-3.25 11.4 

COOP -0.09 
(0.4) 

0.79 
(0.08) 

-0.21 
(0.12) 

-2.6 11.03 

COOP -0.04 
(0.37) 

0.71 
(0.08) 

-0.12 
(0.12) 

0.19 
(0.12) 

0.45 
(0.11) 

-3.6* 9.11 

CRNO -0.16 0.76 -3.0 14.6 
(0.46) (0.08) 
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Table B.2 - continued 

Model: X(t) = C + 3(l)X(t-l) + 

where = X(t-i) - X(t-i-l) for i = 1, 2, 3, 4, 5 

X(T) C a(l) Y(l) Y (2) Y(3) Y(4) Y(5) T MSE 

CRNO -0.16 0.76 0.03 -3.0 14.8 

TE 0.53 
(0.27) 

0.91 
(0.05) 

-1.8 0.34 

TB 0.62 
(0.26) 

0.89 
(0.05) 

0.32 
(0.12) 

-2.2 0.31 

TB 0.55 
(0.26) 

6.90 
(0.05) 

0.35 
(0.12) 

-0.13 
(0.13) 

-2.0 0.31 

TB 0.64 
(0.26) 

0.88 
(0.13) 

0.41 
(0.13) 

-0.22 
(0.13) 

0.3 
(0.12) 

-2.4 0.29 
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Table B3. Cumulative "t-like" distribution̂  

Probability of a smaller value 

Sample size 0.01 0.025 0.05 0.10 

50 -4.15 -3.80 -3.5 -3.18 

100 -4.04 -3.73 -3.45 -3.15 

250 -3.99 -3.69 -3.43 -3.13 

500 -3.98 -3.68 -3.42 -3.13 

-3.96 -3.66 -3.41 -3.12 

Ŝource: Fuller (1976, p. 373). 
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Table B.4. Granger-causality test results 

4 6 
Model: Y(t) = C + Z a(s)Y(t-s) + Z B(k)X(t-k) + y Fall + Y„Wint + 

s=l k=l  ̂

YgSpri + ê  

Y X C 
(s-e) 

a(l) a(2) cx(3) a(4) 

A CORPF -0.49 
(0.26)3 

-0.15 
(0.08) 

-0.18 
(0.08) 

-0.15 
(0.08) 

0.83 
(0.08) 

CORPF A -0.003 
(0.03) 

1.0 
(0.14) 

-0.17 
(0.19) 

0.28 
(0.19) 

-0.24 
(0.14) 

A SBX -0.06 
(0.33) 

-0.17 
(0.09) 

-0.11 
(0.1) 

-0.17 
(0.09) 

0.77 
(0.1) 

SBX A -3.92 0.28 0.25 -0.22 0.05 

A HPAU -0.34 
(0.27) 

-0.11 
(0.08) 

-0.13 
(0.08) 

-0.15 
(0.08) 

0.84 
(0.08) 

HPAU A -0.05 
(0.08) 

0.93 
(0.12) 

-0.17 
(0.15) 

0.24 
(0.15) 

-0.20 
(0.12) 

A COOP -0.39 
(0.26) 

-0.12 
(0.08) 

-0.14 
(0.08) 

-0.13 
(0.08) 

0.84 
(0.08) 

COOP A -0.0001 
(0.45) 

0.59 
(0.12) 

0.37 
(0.14) 

0.19 
(0.14) 

-0.46 
(0.12) 

A SOH -0.3 
(0.29) 

-0.16 
(0.08) 

-0.15 
(0.08) 

-0.15 
(0.08) 

0.82 
(0.08)' 

SOH A —8.48 
(15.3) 

1.09 
(0.15) 

-0.02 
(0.21) 

-0.31 
(0.2) 

0.05 
(0.13) 

Ŝtandard deviation of the coefficient. 

Ŝignificant at oi = 0.01 or above. 

**Significant at a = 0.05 to a = 0.1. 
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6(1) 9(2) 6(3) 3(4) 6(5) 3(6) 

-0.77 
(1.2) 

-0 .02  
(0.01) 

0.01 
(0.01) 

-3.14 

-0.31 
(0.44) 

0.005 
(0.04) 

-0.05 
(0 .08)  

0.15 
(0.24) 

-0.0003 
(0.002) 

-17.95 
(8.11) 

0 . 0 6  
(1.7) 

0.01 
(0.01) 

0.001 
(0.02) 

2.04 

-0.30 
(0.54) 

0 .06  
(0.04) 

-0 .02  
(0.09) 

-0.43 
(0.24) 

-0.0002 
(0.004) 

14.38 
(0.9) 

-1.92 
(1.7) 

0.008 
(0.009) 

0.002 
(0 .02)  

1.16 

0.52 
(0.53) 

-0.01 
(0.02) 

-0.08 
(0.08) 

0.07 
(0.14) 

0.001 
(0.004) 

-1.97 
(4.5) 

2.04 
(1.7) 

0.002 
(0.009) 

0.01 
(0.02) 

0.25 

0.33 
(0.52) 

0.03 
(0.02) 

0.11 
(0 .08)  

0 .08  
(0.14) 

0.002 
(0.004) 

2.89 
(4.5) 

2.47 
(1.9) 

0.03 
(0.01) 

0 .02  
(0.02) 

0.97 

-0.09 
(0.52) 

-0.07 
(0.04) 

0.06  
(0.09) 

-0.12 
(0.24) 

-0.002 
(0.004) 

20.51 
( 8 . 2 )  

-3.37 
(1.5) 

-0.01 
(0.01) 

0.001 
(0 .02)  

-1.89 

-0.13 
(0.38) 

-0.07 
(0.04) 

-0.13 
(0 .08)  

0.47 
(0.24) 

0.001 
(0.003) 

-12.17 
( 8 . 8 )  
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Table B.4 - continued 

4 6 
Model: Y(t) = C + E a(s)Y(t-s) + E 6(k)X(t-k) + Ŷ Fall + ŷ Wint + 

s=l k=l 

Ŷ Spri + ê . 

Fall Wint Spri 
6̂,50 

MSB 

0.47 -0.75 1.74 1.95* 0.99 3.04 
(1.9) (1.8) (1.8) 

-0.04 -0.06 0.15 1.15 0.84 0.04 
(0.2) (0.2) (0.2) 

-2.35 -1.1 3.69 0.53 0.99 3.52 
(2.74) (2.55) (2.67) 

3.63 -45.4 -22.02 3 .67*  0.67 273.4 

-3.79 1.91 5.62 0.67 0.99 3.47 
(3.14) (3.4) (3.0) 

3.61 -1.24 -5.44 4.62* 0.96 0.28 
(0.86) (0.92) (0.97) 

-0.41 -0.75 2.32 1.3 0.99 3.2 
(1.88) (1.97) (1.87) 

0.32 -0.61 -0.34 0.77 0.70 9 .8  
(3.3) (3.3) (3.3) 

-1.1 -1.03 2.58 0.72 0.99 3.45 
(2.08) (1.96) (2.04) 

54.96 174.72 -114.08 2.09** 0.84 9,678.2 
(106.4) (102.9) (105.8) 
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Table B.4 - continued 

4 6 
Model: Y(t) = C + E a(s)Y(t-s) + Z 0(k)X(t-k) + Ŷ Fall + y Wint + 

s=l k=l  ̂  ̂

YgSpri + ê  

Y X C 
(s'e) 

a(l) a(2) a(3) o(4) 

A SMH -.30 
(0.26) 

-0.19 
(0.08) 

-0.22 
(0.08) 

-0.21 
(0.08) 

0.48 
(0.08) 

SMH A 5.13 
(6.5) 

1.09 
(0.15) 

-0.26 
(0.22) 

0.13 
(0.22) 

-0.12 
(0.14) 

A TB 
(not détrehd) 

1.46 
(0.93) 

-0.24 
(0.09) 

-0.24 
(0.09) 

-0.23 
(0.09) 

0.72 
(0.09) 

TB A 0.59 
(0.25) 

1.26 
(0.13) 

-0.44 
(0.22) 

0.29 
(0.22) 

-0.22 
(0.14) 

A ' FIMP -0.29 
(0.26) 

-0.14 
(0.07) 

-0.10 
(0.08) 

-0.12 
(0.08) 

0.85 
(0.08) 

FIMP A -4.67 
(5.04) 

1.13 
(0.14) 

-0.17 
(0.2) 

0.03 
(0.18) 

-0.28 
(0.13) 

SBHF CORPF -13.8 
(8.4) 

0.38 
(0.13) 

-0.06 
(0.13) 

-0.32 
(0.13) 

0.41 
(0.14) 

CORPF SBHF -0.04 
(0.03) 

0.84 
(0.15) 

0.004 
(0.19) 

0.23 
(0.2) 

-0.2 
(0.14) 

SBHF SBX -20.8 
(9.4) 

0.5 
(0.13) 

0.13 
(0.14) 

-0.49 
(0.14) 

0.28 
(0.14) 

SBX SBHF -5.9 
(3.37) 

0.15 
(0.14) 

0.14 
(0.16) 

-0.09 
(0.16) 

0.04 
(0.16) 

SBHF HPAU -16.90 
(8.5) 

0.35 
(0.12) 

-0.09 
(0.13) 

-0.31 
(0.13) 

0.42 
(0.14) 

HPAU SBHF -0.07 
(0.09) 

0.92 
(0.13) 

-0.17 
(0.16) 

0.19 
(0.16) 

-0.17 
(0.12) 

SBHF COOP -12.9 
(8.5) 

0.36 
(0.13) 

-0.07 
(0.13) 

-0.34 . 
(0.13) 

0.46 
(0.13) 
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0(1) 0(2) 3(3) 0(4) 3(5) 3(6) 

-0.002 
(0.006) 

-2.53 
(3.45) 

0.12 
(0.47) 

0.04 
(0.04) 

0 .02  
(0.006) 

-9.28 
(2.9) 

4.58 
(40.87) 

-0.0005 
(0.0005) 

-1.47 
(0.37) 

0 . 0 2  
(0.05) 

-3.26 
(13.4) 

-0.001 
(0.001 

1.22 
(2.57) 

-0.005 
(0.009) 

5.13 
(3 .6 )  

0.44 
(0.76) 

0 . 02  
(0.02) 

-0.01 
(0.009) 

-0.78 
(3.25) 

5.13 
(57.9) 

-0.0005 
(0.0005) 

0.41 
(0.42) 

0.11 
(0 .06)  

11.25 
(15.6) 

0.004 
(0.001) 

0 . 6  
(3.06) 

0.002  
(0.009) 

0.74 
(2.1) 

-1.08 
(0.79) 

-0.03 
(0.02) 

-0.003 
(0.009) 

-1.09 
(1.56) 

-19.8 
(56.3) 

0.0001 
(0.0005) 

0.81 
(0.41) 

-0.18 
(0.05) 

-22.89 
(14.9) 

-0.006 
(0.001) 

-0.74 
(2.85) 

0.01 
(0.008) 

1.29 
(2.1) 

1.17 
(0.79) 

0.001 
(0.02) 

0.0008 
(0.009) 

-1.75 
(0.55) 

-0.57 
(55.22) 

-0.0001 
(0.0005) 

-1.17 
(0.42) 

0.03 
(0.05) 

-5.13 
(15.4) 

0.001 
(0.001) 

2.36 
(2.83) 

-0.007 
(0.008) 

4.43 
(3.58) 

-1.43 
(0.79) 

. -0.04 
(0.04) 

0.0003 
(0.01) 

7.35 
(3.0) 

67.53 . 
(63.3) 

-0.0008 
(0.0007) 

-0 .22  
(0.42) 

0.05 
(0 .06)  

-4.37 
(15.1) 

0.002 
(0.001) 

-1.03 
(3.04) 

-0.007 
(0.006) 

- 2 . 6  
(3.6) 

0.36 
(0.52) 

-0.04 
(0.04) 

0.004 
(0.008) 

-0.29 
(3.2) 

-46.5 
(47.9) 

-0.0006 
(0.0007) 

0.58 
(0.38) 

-0.10 
(0.05) 

18.05 
(11.1) 

-0.001 
(0.001) 

-0.29 
(2.7) 
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Table B.4 - continued 

Model: Y(t) = C + Z a(s)Y(t-s) + Z e(k)X(t-k) + Yn̂ all + YoWint + 
s=l .. k=l 

Ŷ Spri + ê  

Fall Wint Spri 
*6,50 

MSE 

0.04 
(1.89) 

-0.98 
(1.87) 

1.76 
(1.89) 

1.6 0.99 3.14 

-25.5 
(47.0) 

47.3 
(47.4) 

21.33 
(47.5) 

0.73 0.80 2,012. 

-0.63 
(1.92) 

01.45 
(1.88) 

2.8 
(1.96) 

2.17** 0.99 2.97 

0.17 
(0.56) 

0.8 
(0.54) 

-0.57 
(0.55) 

1.19 0.9 0.26 

-1.5 
1.88 

-0.84 
1.89 

2.47 
1.87 

1.58 0.99 3.15 

-14.15 
(36.6) 

-14.39 
(36.3) 

2.7 
(36.4) 

1.81 0.81 1,194. 

194.3 
(32.7) 

-89.14 
(41.2) 

-110.7 
(39.9) 

0.36 0.89 3,320. 

-0.21 
(0.16) 

-0.05 
(0.16) 

0.25 
(0.15) 

1.65 0.85 0.04 

226.4 
(27.6) 

-48.6 
(43.7) 

-165.2 
(3.53) 

3.17* 0.93 2,135. 

29.5 
(15.7) 

-21.8 
(16.7) 

-28.7 
(14.9) 

2.57* 0.63 301. 

291.3 
(64.9) 

-100.7 
(87.9) 

-211.7 
(71.5) 

1.35 0.91 2,978. 

3.8 
(0.78) 

-1.6 
(0.89) 

-4.6 
(0.73) 

3.2* 0.95 0.32 

186.3 
(31.7) 

-94.7 
(40.9) 

-107.6 
(39.5) 

0.52 0.89 3,261. 



www.manaraa.com

Table B.4 - continued 

4 6 
Model: Y(t) = C + E a(s)Y(t-s) + S B(k)X(t-k) + YnFall + y.Wlnt + 

s=l k=l 

YgSpri + ê  

Y X C 
(s -e) 

ad) a(2) a(3) a(4) 

COOP SBHF -0.32 
(0.46) 

0.48 
(0.14) 

0.40 
(0.15) 

0.25 
(0.13) 

-0.45 
(0.12) 

SBHF SOH -14.6 
(8.03) 

0.34 
(0.12) 

-0.02 
(0.12) 

-0.31 
(0.13) 

0.60 
(0.13) 

SOH SBHF -5.19 
(15.6) 

1.06 
(0.15) 

-0.13 
(0.23) 

-0.07 
(0.22) 

-0.05 
(0.14) 

SBHF SMH -12.6 
(8.6) 

0.37 
(0.13) 

-0.02 
(0.13) 

-0.35 
(0.13) 

0.5 
(0.13) 

SMH SBHF -1.88 
(5.99) 

0.99 
(0.12) 

-0.28 
(0.19) 

0.33 
(0.19) 

-0.23 
(0.13) 

SBHF TB 
(not detrend) 

-29.6 
(27.9) 

0.43 
(0.12) 

0.01 
(0.13) 

-0.42 
(0.13) 

0.46 
(0.13) 

TB SBHF 0.65 
(0.24) 

1.19 
(0.13) 

-0.4 
(0.21) 

0.32 
(0.22) 

-0.27 
(0.13) 

SBHF PIMP -12.7 
(8.09) 

0.35 
(0.12) 

-0.03 
(0.13) 

-0.35 
(0.12) 

0.49 
(0.13) 

FIMP SBHF -5.3 
(+5.8) 

0.94 
(0.14) 

-0.15 
(0.19) 

0.18 
(0.22) 

-0.37 
(0.15) 

SBC CORPF -6.47 
(8.4) 

0.18 
(0.12) 

0.02 
(0.12) 

-0.05 
(0.12) 

0.46 
(0.12)* 

CORPF SBC -0.03 
(0.03) 

0.87 
(0.14)* 

-0.02 
(0.19) 

0.23 
(0.19) 

-0.27 
(0.14) 

SBC SBX -26.16 0.23 -0.04 0.05 0.51 

SBX SBC -4.2 
(3.16) 

0.09 
(0.13) 

-0.03 
(0.15) 

-0.16 
(0.15) 

0.33 
(0.16) 
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6(1) 6(2) 6(3) 6(4) 6(5) 6(6) 

0.0003 
(0.009) 

-0.06 
(0 .08)  

0.07 
(0.32) 

-0.05 
(0.18) 

-0.11 
(0.11) 

27.02 
(14.7) 

-0.001 
(0.001) 

-0.53 
(0.2) 

-0.05 
(0.12) 

-26 .6  
(43.9) 

0.002 
(0.0005) 

-1.1 

0.01 
(0.05) 

0.01 
(0.009) 

-0.09 
(0.11) 

0.46 
(0.33) 

-0 .21  
(0 .28)  

0.29 
(0.12) 

-26.03 
(24.5) 

0.00004 
(0.001) 

0.73 
(0.3) 

0.03 
(0.12) 

-21.6 
(61.3) 

0.0001 
(0.0005) 

-0.29 

0.07 
(0.05) 

-0.005 
(0.007) 

0.09 
(0.11) 

0.03 
(0.27) 

0.42 
(0.28) 

-0.05 
(0.09) 

-13.2 
(24.9) 

0.0005 
(0.001) 

-0.09 
(0.3) 

-0 .08 
(0.09) 

2 . 6  
( 6 0 . 6 )  

-0.0003 
(0.0004) 

-1.17 

-0.002 
(0.04) 

0.002 
(0.008) 

-0.07 
(0.11) 

0.05 
(0.29) 

-0.27 
(0.27) 

0.07 
(0.01) 

24.16 
(24.8) 

-0.001 
(0.001) 

-0.06 
(0.3) 

0 .02  
(0.1) 

50.8 
(60.1) 

-0.0001 
(0.0004) 

-0.71 

-0.0007 
(0.04) 

-0.009 
(O.Oo) 

0.09 
(0.11) 

-0 .26 
(0.38) 

0.29 
(0.27) 

-0.01 
(0.13) 

9.24 
(24.7) 

-0.002 
(0.002) 

-0 .02  
(0.3) 

0.02  
(0.14) 

8.4 
( 6 6 . 6 )  

-0.001 
(0.0005) 

-0.49 

0.04 
(0.04) 

-0.01 
(0.01) 

-0.02 
(0.07) 

-0.01 
(0.34) 

-0.15 
(0.19) 

-0.41 
(0.12) 

-18.1 
(14.7) 

0.001 
(0.001) 

0 .02  
(0 .2 )  

-0.15 
(0.12) 

-23.7 
(50.3) 

-0.0003 
(0.0005) 

0.5 

-0.06 
(0.04) 
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Table B.4 - continued 

Model: 
4 

Y(t) = G + Z 
s=; 

YgSprl 

oi(s)Y(t-s) 
1 

= =t 

6 
+ E 6(k)X(t-k) + Y 
k=l 

Fall + Ŷ Mint + 

Fall Wint Spri F 
6,50 

MSE 

-3.15 
(2.35) 

0.76 
(2.41) 

1.59 
(2.26) 

1.75 0.73 8.86 

160.7 
(35.15) 

-96.4 
(39.0) 

-90.4 
(39.2) 

1.57 0.90 2,914.9 

113.5 
(89.2) 

129.6 
(86.9) 

-98.8 
(84.7) 

1.10 0.82 10,698. 

189.0 
(33.5) 

-104.7 
(40.6) 

-105.1 
(39.8) 

0.69 0.9 3,194.9 

-18.6 
(31.1) 

12.8 
(31.7) 

34.6 
(30.4) 

3.72* 0.85 1,513. 

191.4 
(31.5) 

-104.7 
(40.3) 

-126.3 
(39.4) 

1.48 0.91 2,939. 

-0.24 
(0.42) 

0.91 
(0.40) 

-0.25 
(0.39) 

1.87 0.91 . 0.24 

179.1 
(30.7) 

-84.7 
(40.0) 

-112.0 • 
(37.9) 

1.79 0.91 2,849. 

-9.8 
(29.5) 

-11.1 
(30.0) 

9.02 
(28.6) 

0.42 0.78 1,384. 

171.4 
(40.8)* 

4.5 
(47.3) 

-75.4 
(44.7)** 

0.41 0.9 3,936. 

-0.17 
(0.14) 

0.10 
(0.15) 

0.03 
(0.15) 

0.95 0.84 0.04 

133.2 19.79 -52.5 4.3* 0.57 354.3 
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Table B.4 - continued 

. .. 4 6 
Model: Y(t) = G + l a(s)Y(t-s) + Z g(k)X(t-k) + y Fall + y.Wlnt + 

s=l k=l  ̂

YgSprl + 

C ad) a(2) a(3) a(4) 
(s-e) 

SBC COOP -5.77 0.18 0.01 -0.09 0.49 
(8.3) (0.12) (0.12) (0.12) (0.12)* 

COOP SBC -0.23 0.55 0.38 0.23 -0.51 
(0.42) (0.12) (0.14) (0.14) (0.12) 

SBC SOH -8.3 0.14 0.04 -0.07 0.57 
(7.9) (0.11) (0.12) (0.12) (0.12) 

SOH SBC -13.0 1.14 -0.2 -0.14 0.01 
(14.3) (0.15) (0.22) (0.22) (0.15) 

SBC SMH -6.33 0.13 0.02 -0.03 0.54 
(7.7) (0.11) (0.11) (0.11) (0.11)* 

SMH SBC -0.28 1.05 -0.27 0.18 -0.18 

SBC TB -43.7 0.22 -0.005 -0.06 0.51 
(31.4) (0.12)** (0.12) (0.12) (0.12)* 

TB SBC 0.48 1.3 -0.53 0.43 -0.28 
(0.24) (0.13)* (0.22)* (0.21)* (0.12)* 

SBC FIMP -7.07 0.18 -0.03 -0.09 0.46 
(7.9) (0.12) (0.12) (0.12) (0.11) 

FIMP SBC -4.3 0.98 -0.25 0.27 -0.41 
(4.8) (0.13)* (0.2) (0.2) (0.14)* 

SBC SOX -7.18 0.2 -0.004 0.04 0.49 
(8.1) (0.12) (0.12) (0.12) (0.12) 

SOX SBC -3.1 0.81 -0.28 0.14 -0.002 
(9.4) (0.13)* (0.17) (0.16) (0.13) 

SBC HPAU -6.34 0.15 0.005 -0.06 0.66 
(7.6) (0.11) (0.11) (0.12) ~ (0.12) 
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6(1) 6(2) 6(3) 6(4) 6(5) 6(6) 

-2.5 
(2.8) 

0.007 
(0.007) 

0.003 
(0.08) 

-0.13 
(0.27) 

0.10 
(0.19) 

-0.012 

42.4 
(15.6)* 

0.0005 
(0.001) 

-0.54 
(0.23)* 

-0.11 
(0.009) 

-0.02 , 
(0.11) 

-0.13 
(0.15) 

15-18 
(14.5) 

3.3 
(3.3) 

0.0002 
(0.007) 

-0.17 
(0.12) 

0.4 
(0 .26)  

-0,27 
( 0 . 2 8 )  

0 . 1  

-55.2 
(26.5)* 

-0.002 
(0.001) 

0.51 
(0.34) 

0.05 
(0.09) 

0.06 
(0.14) 

0.34 
(0.15) 

-23.5 
(16.6) 

-1.97 
(3.1) 

-0.007 
(0 .006)  

0.09 
(0.12) 

-0.03 
(0.22) 

-0.14 
(0 .28)  

-0.08 

28.5 
(28.7) 

0.0008 
(0.001) 

0.15 
(0.34) 

-0.07 
(0.07) 

-0.21 
(0.14) 

-0.03 
(0.08) 

09.9 
(15.1) 

-0.07 
(3.07) 

-0.002 
(0.006) 

-0 .02 
(0.12) 

-0.11 
(0.21) 

0.16 
(0 .28 )  

-0.05 

-3.7 
(29.04) 

-0.002 
(O.OOo) 

-0.25 
(0.33) 

0.003 
(0.07) 

0.19 
(0.15) 

0.15 
(0.07) 

-23.3 
(15.1) 

-2.15 
(3.29) 

-0.006 
(0.007). 

0.03 
(0.12) 

-0.03 
(0.27) 

0.38 
(0.29) 

-0 .02 

-16.2 
(27.7) 

-0.00001 
(0.001) 

-0.14 
(0.37) 

-0.04 
(0 .08)  

-0.07 
(0.14) 

0.29 
(0.15) 

18.9 
(15.3) 

3.9 
(2.95) 

-0,007 
(0.007) 

0 .02  
(0.08)  

-0.11 
(0.25) 

-0.14 
(0.2) 

-0.18 

11.6 
(16.0) 

0.001 
(O.OOo) 

-0 .02 
(0 .28 )  

-0.05 
(0 .08)  

0.05 
(0.11) 

-0.18 
(0.16) 

8.9 
(12.2) 
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Table B.A - continued 

Model: Y(t) = C + Z ct(s)Y(t-s) + Z B(k)X(t-k) + Y.Fall + y Wint + 
s=l k=l  ̂

Ŷ Spri + 

Fall Wint Sprl F 
6,50 

MSE 

163.5 
(39.1)* 

-7.5 
(44.2) 

-73.7 
(43.1)* 

0.55 0.91 3,874 

-0.54 
(2.2) 

-1.86 
(2.3) 

0.72 
(2.2) 

0.87 0.70 9.72 

142.3 
(40.5) 

-6.89 
(42.5) 

-60.5 
(42.2) 

1.59 0.92 3,468. 

131.13 
(77.6) 

120.3 
(81.1) 

-97.9 
(79.3) 

0.57 0.81 11,338. 

160.7 
(40.1)* 

4.45 
(42.1) 

-71.8 
(41.4)* 

1.63 0.92 3,453. 

21.9 -0.6 6.3 0.94 0.81 1,966. 

157.7 
(37.5)* 

-9.36 
(42.7) 

-64.6 
(42.0)* 

1.55 0.91 3,482. 

0.54 
(0.33) 

-0.08 
(0.36) 

-0.05 
(0.34) 

2.23* 0.91 0.23 

163.4 
(37.5) 

-6.8 
(43.4) 

-66.6 
,, (42.8) 

1.39 0.91 • 3.539. 

-22.3 
(25.3) 

31.2 
(27.5) 

-6.5 
(26.4) 

0.76 0.78 1,332.5 

157.7 
(39.4)* 

1.49 
(43.7) 

-54.4 
(42.1) 

1.88** 

3.5* 

0.92 

0.63 

3.369.2 

4,860. 

187.5 
(71.6) 

-126.5 
(91.3) 

-112.5 
(74.9) 

2.11** 0.92 3,294. 
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Table B.4 - continued 

4 6 
Model: Y(t) = C + S a(s)Y(t-s) + S 3(k)X(t-k) + Y^Fall + YoWint + 

s=l k=l 

YgSpri + ê  

Y X c 
(s-e) 

a(l) a(2) a(3) 01(4) 

HPAU sBe -0.002 0.79 -0.06 0.16 -0.14 
(0.07) (0.13) (0.15) (0.15) (0.12) 

se eORPF -4.36 0.74 -0.26 -0.22 0.06 
(1.88) (0.14) (0.17) (0.17) (0.15) 

GORPF se -0.02 0.86 0.16 0.12 -0.28 
(0.03) (0.14) (0.19) (0.19) (0.13) 

se SBX -3.43 1.11 -0.43 -0.24 0.09 
(2.02) (0.18) (0.25) (0.25) (0.2) 

SBX se -4.28 -0.11 -0.16 0.13 0.42 
(2.89) (0.17) (0.19) (0.18) (0.18) 

se HPAU -3.5 0.64 -0.27 -0.27 0.19 • 
(1.77) (0.15) (0.17) (0.17) (0.14) 

. HPAU se -0.0003 0.79 -0.08 0.11 -0.07 
(0.09) (0.14) (0.17) (0.17) (0.14) 

se COOP -4.11 0.69 -0.21 -0.22 0.07 
(1.91) (0.14) (0.18) (0.19) (0.16) 

COOP se -0.20 0.63 0.39 0.19 -0.49 
(0.43) (0.13) (0.14) (0.13) (0.12) 

se SOH -2.9 0.6 0.006 -0.31 0.32 
(1.8) (0.17) (0.21) (0.2) (0.18) 

SOH se -13.7 1.22 -0.39 0.22 -0.24 
(14.6) (0.17) (0.26) (0.27) (0.18) 

se SMH -3.06 0.62 -0.20 -0.20 0.16 
(1.72) (0.15) (0.17) (0.17) (0.15) 

SMH se -1.19 1.07 -0.31 0.38 . -0.36 
(6.6) (0.14) (0.22) (0.23) (0.16) 
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6(1) 3(2) 6(3) G(4) 3(5) 0(6) 

0.002 
(0.001) 

-15.35 
(9.03) 

0.001 
(0.002) 

-0.32 
*0.13) 

0.36 
( 0 . 2 6 )  

3.56 
(2.8) 

0.01 
(0.007) 

-0.54 
(0.64) 

0.07 
(0.03) 

0.02  
(0 .02)  

-0.75 
(1.4) 

0.02 
(0.04) 

0.16 
(0,54) 

0.001 
(0.001) 

18.8 
(12.4) 

-0.002 
(0.003) 

0.09 
(0.14) 

0.34 
(0.35) 

1.53 
(3.4) 

-0.01 
(0.008) 

-0.04 
(0.74) 

-0.05 
(0.04) 

-0 .02 
(0.03) 

2.9 
(1.73) 

-0.11 
(0 .06)  

0.15 
(0.62) 

-0.003 
(0.001) 

-6.13 
(12.4) 

-0.0001 
(0.003) 

0.13 
(0.13) 

-0.75 
(0.36) 

3.51 
(3.2) 

-0.003 
(0.009) 

0.06  
(0.69) 

-0.07 
(0.04) 

0 . 0 2  
(0.03) 

-4.79 
(1.78) 

0.06 
(0.06) 

-0.84 
(0.62) 

0.001 
(0.001) 

-0.84 
(12.5) 

0.0003 
(0.003) 

-0.01 
(0.12) 

0.04 
(0.38) 

-5.76 
(3.2) 

0.01 
(0.009) 

0.05 " 
(0.65) 

0 .06  
(0.04) 

-0.016 
(0.03) 

1.58 
(1.75) 

-0.07 
(0 .06)  

0 .08  
(0.64) 

0.0007 
(0.001) 

-13.85 
(13.5) 

-0.007 
(0.003) 

0.14 
(0.11) 

0 .02  
(0.33) 

-1.67 
(3.2) 

-0.01 
(0.01) 

-0.13 
(0.72) 

-0.08 
(0.05) 

0.02 • 
(0.03) 

-0.34 
(1.92) 

0.06 
(0 .06)  

-0.81 
(0.76) 

0.002 
(0.001) 

8.72 
(9.7) 

0.007 
(0.003) 

-0.15 
(0.10) 

0 .06  
(0.24) 

0.72 
(2.6) 

0.008 
(0.008) 

-0 .22  
(0.63) 

0 .02  
0.04 

-0.004 
(0.02) 

1.22 
(1.47) 

-0.003 
(0.04) 

0 .60  
(0.61) 
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Table B.4 - continued 

4 6 
Model: Y(t) = C + S a(s)Y(t-s) + 2 0(k)X(t-k) + y Fall + Y,Wint + 

s=l k=l 

Ŷ Spri + ê  

Fall Wint Spri 
6̂,50 

MSE 

4.63 -1.19 -5.05 4.6* 0.96 0.28 
(0.72) (0.86) (0.71) 

9.64 5.23 -3.58 1.32 0.60 152.2 
(3.5) (3.6) (3.6) 

-0.15 0.04 0.07 2.12** 0.85 0.03 
(0.06) (0.06) (0.06) 

5.7 7.8 -2.89 1.69 0.62 146.5 
(4.62) (4.29) (4.2) 

12.5 7.8 3.01 2.26** 0.62 309.8 
(6.8) (6.5) (6.9) 

29.1 17.7 -25.1 1.66 0.61 146.9 
(13.5) (15.1) (13.8) 

3.59 -1.28 -3.3 1.18 0.94 0.38 
(0.6) (0.7) (0.63) 

7.57 (8.04) -4.7 0.55 0.57 165.4 
(3.45) (3.36) (3.5) 

-0.28 -0.47 0.05 2.89* 0.76 7.97 
0.86 (0.81) (0.87) 

11.82 2.81 -3.94 1.25 0.6 153.4 
(4.5) (4.23) (3.88) 

132.89 40.85 -27.55 1.75 0.83 10,008. 
(34.1) (36.9) (37.6) 

9.45 5.15 -3.04 2.13** 0.63 140.5 
(3.96) (3.49) (3.49) 

16.48 13.8 15.3 1.25 0.81 1,903.7 
(13.8) (14.1) (14.5) 
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Table B.4 - continued 

4 6 
Model: Y(t) = C + E a(s)Y(t-s) + S g(k)X(t-k) + y,Fall + YoWint + 

s=l k=l 

YgSpri + ê  

Y X c 
(s*e) 

ad) a(2) a(3) a(4) 

se TB -4.4 0.77 -0.22 -0.24 0.16 
(6.8) (0.14) (0.18) (0.18) (0.15) 

TB se 0.65 1.21 -0.45 0.42 -0.3 
(0.25) (0.14) (0.21) (0.21) (0.13) 

se FIMP -3.52 0.73 -0.17 -0.25 0.13 
(1.56) (0.14) (0.17) (0.17) (0.13) 

FIMP se -2.98 0.98 -0.08 0.02 -0.27 
(5.2) (0.13) (0.2) (0.22) (0.14) 

PS eORPF -0.05 0.73 0.11 -0.43 0.35 
(0.1) (0.17) (0.24) (0.25) (0.18) 

eORPF PS -0.01 1.39 -0.99 0.86 -0.48 
(0.02) (0.17) (0.25) (0.26) (0.17) 

PS SBX 0.04 0.75 0.02 0.02 0.02 
(0.13) (0.14) (0.18) (0.19) (0.15) 

SBX PS -4.86 0.09 0.04 -0.11 0.36 
(3.2) (0.13) (0.16) (0.15) (0.15) 

PS HPAU -0.01 0.82 -0.18 0.058 0.12 
(0.1) (0.14) (0.18) (0.18) (0.14) 

HPAU PS -0.11 0.72 -0.14 0.16 -0.04 
(0.08) (0.14) (0.16) (0.16) (0.13) 

PS COOP -0.03 1.08 -0.42 . 0.002 0.37 
(0.1) (0.17) (0.23) (0.23) (0.19) 

eoop PS 0.23 0.44 0.27 -0.004 -0.41 
(0.35) (0.17) (0.2) (0.18) (0.13) 

PS SOH 0.02 0.92 -0.18 —0.04 0.13 
(0.09) (0.14) (O.lo) (0.19) (0.15) 
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B(l) 6(2) 8(3) 6(4) 3(5) 6(6) 

-1.15 
(3.68) 

0.0001 
(0.005) 

-0 .18 
(0.04) 

0 .08  
(0.43) 

1.18 
(0.76) 

-0.09 
(0.03) 

0 . 0 2  
(0.006) 

-6.63 
(3.44) 

0.08  
(0.18) 

0.007 
(0.10) 

-0.11 
(0.05) 

0.79 
(0.6) 

0.003 
(0.001) 

3.38 
(5.8) 

-0.002 
(0.007) 

0.13 
(0.07) 

-0.35 
(0.57) 

-2.32 
(1.08) 

0 . 2 2  
(0.05) 

0.004 
(0.007) 

3.31 
(4.47) 

-0.03 
(0 .22 )  

-0.14 
(0.13) 

0.10 
(0.05) 

-1.09 
(0 .8)  

-0.003 
(0.001) 

-1.75 
(6.01) 

-0.004 
(0.007) 

0.06 
(0.06)  

0 .06 
(0.55) 

2.23 
(0.99) 

-0.24 
(0 .06)  

-0.002 
(0.006) 

-1.77 
(4.43) 

0.19 
(0.22) 

0.11 
(0.14) 

0.004 
(0.05) 

2.13 
(0.79) 

-0.001 
(0.002) 

-0.61 
(5.9) 

-0.008 
(0.007) 

-0 .02 
(0.07) 

0.76 
(0.51) 

-0.7 
(0.84) 

0 . 2 2  
(0.05) 

0.001 
(0.01) 

3.34 
(4.34) 

0.05 
(0.22) 

-0.06 
(0.14) 

-0 .06 
(0.04) 

-0.31 
(0.85) 

0.003 
(0.002) 

-0.17 
(5.67) 

0.008 
(0.008) 

-0.04 
(0.07) 

-1.81 
(0.61) 

-0.54 
(0.89) 

-0.05 
(0.05) 

-0.01 
(0.01) 

0.18 
(4.44) 

-0 .06 
(0 .22 )  

-0.09 
(0.14) 

-0.05 
(0.04) 

1.57 
(0.81) 

"0.003 
(0.002) 

0.55 
(3.42) 

0.003 
(0.007) 

-0.05 
(0.05) 

0.92 
(0.49) 

0.14 
(0.66) 

0 . 0 0 2  
(0.04) 

0.003 
(0.01) 

-2.16 
(3.74) 

-0.11 
(0.17) 

-0.005 
(0.12) 

0.04 
(0.04) 

-0.13 
(0.75) 

0.001 
(0.001) 
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Table B.A - continued 

4 6 
Model: Y(t) = C + Z (x(s)Y(t-s) + Z 6(k)X(t-k) + y.Fall + y Wint + 

s=l k=l 

Ŷ Spri + 

Fall Wine Spri Fg MSE 

9.27 7.13 -6.11 0.09 0.54 174.3 
(3.78) (3.68) (3.77) 

0.02 -0.03 -0.20 1.33 0.90 0.25 
(0.16) (0.15) (0.15) 

6.18 9.2 -3.67 4.56* 0.70 113.9 
(3.17) (2.95) (3.21) 

-6.99 -1.14 8.3 1.54 0.80 1,226.8 
(10.68) (10.47) (10.7) 

-0.39 0.18 0.09 1.20 0.63 0.66 
•(0.19) (0.2) (0.19) 

-0.10 0.08 -0.01 5.4* 0.89 0.03 
(0.04) (0.04) (0.04) 

-0.16 0.10 -0.01 1.55 0.64 0.63 
(0.27) (0.28) (0.26) 

12.97 4.56 1.51 1.07 0.57 349. 
(6.15) (6.08) (6.2) 

-1.04 0.33 0.90 0.58 0.60 0.70 
(0.88) (0.99) (0.89) 

3.18 -0.85 -2.92 1.35 0.94 0.38 
(0.54) (0.65) (0.56) 

-0.42 0.09 0.25 1.33 0.63 0.65 
(0.18) (0.19) (0.19) 

-1.35 0.52 0.52 4.26* 0.78 7.1 
(0.62) (0.64) (0.62) 

-0.3 -0.15 0.09 2.92* 0.69 0.56 
(0.27) (0.25) (0.23) 
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Table B.4 - continued 

4 6 
Model: Y(t) = C + S (x(s)Y(t-s) + Z 0(k)X(t-k) + y.Fall + y WlnC + 

s=l k=l 

YgSprl + ê  

Y X C 
(s*e) 

ct(l) a(2) a(3) (%(4) 

SOH PS -11.6 1.05 -0.02 -0.18 -0.04 
(13.2) (0.15) (0.23) (0.23) (0.15) 

PS SMH -0.07 0.81 -0.19 0.05 0.04 
(0.11) (0.14) (0.18) (0.18) (0.15) 

SMH PS 8.14 1.009 -0.35 0.24 -0.26 
(6.06) (0.14) (0.2) (0.20) (0.14) 

PS TB 0.12 . 0.83 -0.22 0.05 0.09 
(0.44) (0.15) (0.19) (0.19) (0.15) 

TB PS 0.72 1.25 -0.53 0.44 -0.29 
(0.2) (0.14) (0.22) (0.2) (0.13) 

PS FIMP -0.12 0.2 0.06 -0.37 0.31 
(0.09) (0.2) (0.2) (0.2) (0.16) 

FIMP PS —1,2 1.35 -0.67 0.61 -0.53 
(4.4) (0.16) (0.25) (0.25) (0.17) 

PM CORPF -1.86 1.09 -0.21 -0.31 0.22 
(3.04) (0.2) (0.27) (0.27) (0.18) 

CORPF PM -0.01 . 0.9 -0.32 0.49 -0.29 
(0.02) (0.19) (0.26) (0.27) (0.17) 

PM SBX -3.0 0.9 -0.13 -0.06 -0.06 
(4.1) (0.15) (0.22) (0.2) (0.15) 

SBX PM -5.19 0.08 -0.009 -0.06 0.32 
(2.9) (0.14) (0.15) (0.15) (0.14) 

PM HPAU -1.92 0.95 -0.22 -0.03 -0.05 
(3.2) (0.14) (0.19) (0.19) (0.14) 

HPAU PM -0.09 0.67 -0.09 0.16 •- -0.001 
(0.07) (0.14) 



www.manaraa.com

160 

3(1) 6(2) 0(3) 8(4) 6(5) 0(6) 

-33.3 
(19.3) 

0.003 
(0.003) 

8.23 
(7.2) 

-0.009 
(0.23) 

0.05 
(0.09) 

0 . 0 2  
(0.004) 

-17.9.2 
(8.18) 

-28.3 
(21.8) 

' -0.0005 
(0.001) 

0.17 
( 0 . 2 )  

-0.14 
(0.11) 

0.13 
(5.4) 

0.001 

15.0 
(25.5) 

-0.001 
(0.004) 

-7.35 
(9.4) 

0.19 
(0.38) 

-0.13 
(0.11) 

-0.01 
(0.005) 

26.4 
(9.6) 

2 . 8  
(32.8) 

0.003 
(0.002) 

-0.09 
(0.2) 

0 .08  
(0.16) 

-0.60 
( 6 . 6 )  

-0.003 

-20.3 
(24.4) 

0.001 
(0.004) 

14.9 
(9.44) 

- 0 . 2  
(0.4) 

0.18 
(0.11) 

0.004 
(0.004) 

-33.5 
(10.3) 

52.7 
(32.0) 

-0.003 
(0.002) 

-0.05 
(0.19) 

-0.12 
(0.15) 

5.9 
(6.5) 

54.5 
(22 .02)  

-0.002 
(0.004) 

-5.8 
(9.6) 

0.07 
(0.4) 

-0.1 
(0.11) 

-0.001 
(0.004) 

23.6 
(10.4) 

-40.5 
(26.7) 

0.002 
(0.001) 

-0.09 
(0.18) 

0 .21  
(0.16) 

-1.39 
(6.5) 

-31.8 
(24.04) 

-0.002 
(0.004) 

12.6 
(9.7) 

-0.16 
(0.37) 

0.17 
(0.12) 

-0.001 
(0.004) 

06.5 
(8.67) 

- 8 . 0  
(25.5) 

0.006 
(0.002) 

-0.06 
( 0 . 2 )  

0.06 
(0.19) 

-3.88 
(6.5) 

-0.002 

16.46 
(19.9) 

0.002 
(0.003) 

-1.6 
( 8 . 8 )  

0 .06  
( 0 . 2 2 )  

-0.23 
(0.09) 

0.007 
(0.004) 

8.9 
(7.8) 

15.5 
(19.3) 

-0.00004 
(0.001) 

0.03 
( 0 . 2 )  .  

-0.23 
(0.15) 

0.98 
(5.1) 

-0.007 -0.00003 0.003 
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Table B.4 - continued 

4 6 
Model: Y(t) = C + 2 a(s)Y(t-s) + E 3(k)X(t-k) + y.Fall + YnWint + 

s=l k=l ^ 

YgSprl + 

Fall Wint Spri 
6̂,50 

R2 MSE 

129.06 23.4 -34.7 1.77 0.83 9,983.6 
(29.1) (33.5) (30.6) 

-0.36 0.09 0.21 0.58 0.60 0.70 
. (0.26) (0.23) (0.23) 

14.6 11.2 10.6 1.59 0.82 1,837.2 
(11.3) (11.8) (11.5) 

-0.3 0.04 0.15 0.26 0.59 0.73 
(0.21) (0.2) (0.21) 

-0.10 -0.03 -0.19 1.49 0.9 0.25 
(0.12) (0.13) (0.12) 

-0.14 -0.07 0.14 3.75* 0.71 0.52 
(0.17) (0.17) (0.17) 

8.58 -2.5 6.4 2.5* • 0.82 1,118.6 
(7.9) (8 .4 )  (8.03) 

-5.5 3.2 1.66 1.118 0.66 563.2 
(5.7) (5.99) (5.6) 

-0.1 0.06 -0.01 1.66 0.85 0.03 
(0.04) (0.05) (0.04) 

-1.27 2.18 3.04 0.27 0.63 618.9 
(8.3) (8.76) (8.4) 

12.06 5.42 3.49 1.51 0.59 333.5 
(6.62) (6.22) (6.2) 

-10.05 32.4 7.46 0.29 0.63 617.2 
(26.3) (29.5) (26.7) 

3.13 -0.69 -2.9 1.95** 0.95 0.36 



www.manaraa.com

Table B.4 - continued 

4 6 
Model: Y(t) = C + Z ct(s)Y(t-s) + Z 3(k)X(t-k) + ŷ Fall + YoWint + 

s=l k=l 

Y Ŝpri + ê  

Y X C 
(s«e) 

o(l) a(2)  a(3) a(4) 

PM COOP -1.7 1.07 -0.24 -0.23 0.3 
(2.86) (0.14) (0.2) (0.22) (0.2) 

COOP PM 0.2 0.26 0.42 0.23 -0.35 
(0.3) (0.13) (0.15) (0.18) (0.13) 

PM SOH -0.33 0.95 -0.08 -0.26 0.08 
(2.86) (0.14) (0.19) (0.2) (0.15) 

SOH PM -13.06 1.2 -0.15 -0.25 0.05 
(13.0) (0.14) (0.22) ' (0.2) (0.1) 

PM SMH -2.5 0.95 -0.23 -0.004 -0.09 
(3.2) (0.14) (0.19) (0.19) (0.14) 

SMH PM 5.9 0.96 -0.27 0.19 -0.16 
(5.8) (0.14) (0.21) (0.2) (0.13) 

PM TB 8.4 0.9 -0.25 0.005 -0.02 
(12.5) (0.14) (0.19) (0.19) (0.14) 

TB PM 0.61 1.22 -0.5 0.41 -0.25 
(0.26) (0.14) (0.22) (0.2) (0.13) 

PM FIMP -2.15 0.76 -0.12 -0.39 0.38 
(3.4) (0.29) (0.32) (0.32) (0.27) 

FIMP PM 1.45 0.78 -0.42 0.68 -0.71 
(5.01) (0.27) (0.31) (0.3) (0.26) 

PO CORPF -0,03 0.59 0.51 -0.78 0.27 
(0.39) (0.22) (0.28) (0.29) (0.22) 

CORPF PO -0.01 1.30 -0.85 0.98 -0.85 
(0.02) (0.23) (0.3) (0.31) (0.22) 

PO SBX 0.2 0.75 0.30 -0.09 . -0.14 
(0.58) (0.15) (0.19) (0.19) (0.15) 
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3(1) 9(2)  8(3)  3(4) 3(5) 3(6) 

-3.45 
(1.26) 

0.06  
(0.01) 

0.10 
(0.03) 

-1.6 
( 0 . 6 )  

0.07 
(0 .08)  

0 .02  
( 0 . 2 )  

1.08 
(6.7) 

0.005 
(0.003) 

0.15 
( 0 . 2 )  

0.39 
(0.42) 

5.28 
(3.63) 

-0 .02 
(0.01) 

0.05 
(0.02) 

2.92 
(1.36) 

-0.05 
(0 .02)  

-0.13 
(0.05) 

1.84 
( 0 . 8 )  

-0.07 
(0.12) 

-0.01 
(0.3) 

5.26 
(10.6) 

-0.006 
(0.004) 

-0 .1  
(0 .2 )  

0.48 
(0.46) 

-8.79 
(5.19) 

0.04 
(0 .02)  

0 .02  
(0 .02)  

-0.83 
(1.31) 

0.03 
(0.03) 

0.03 
(0.05) 

-1.46 
(0.84) 

0 . 0 8  
(0.11) 

0 . 2 6  
(0.3) 

-11,69 
(11.12) 

0.005 
(0.004) 

0.24 
( 0 . 2 )  

-0.90 
(0.47) 

13.14 
(5.16) 

-0.05 
(0 .02)  

-0.02 
(0.03) 

-0.97 
(1.26) 

0.01 
(0.02) 

0.05 
(0.05) 

1.73 
(0 .8 )  

-0.13 
(0.11) 

0.12 
(0.3) 

4.3 
(11.1) 

-0.003 
(0.004) 

-0.34 
( 0 . 2 )  

0.77 
(0.43) 

-3.89 
(4.25) 

0.04 
(0.01) 

-0 .02 
(0.03) 

-0.09 
(1.19) 

0.03 
(0.03) 

-0 .06 
(0.05) 

-1.3 
(0.9) 

0.03 
(0.12) 

0.07 
(0.4) 

-7.6 
(10.6) 

0.006 
(0.005) 

-0 .02  
(0.15) 

-0.19 
(0.34) 

-5.12 
(3.35) 

-0.01 
(0.01) 

-0.01 
(0.03) 

1.38 
(1.12) 

-0.01 
(0.03) 

0.04 
(0.03) 

0.19 
(0.7) 

0.04 
(0 .08)  

0.16 
(0.4) 

6.5 
(6 .6)  

-0.007 
(0.004) 

0.09 
(0.13) 

0.19 
(0.35) 

0.37 
(2.7) 

0.004 
(0.01) 

0 . 0 2  
(0.03) 
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Table B.4 - continued 

4 6 
Model: Y(t) = C + Z a(s)Y(t-s) + 2 6(k)X(t-k) + y.Fall + Y,Wint + 

s=l k=l ^ 

YgSpri + ê  

Fall Wint Spri 
6̂,50 MSE 

-7.4 3.8 5.58 2.23* 0.69 503.6 
(4.9) (5.14) (5.14) 

-1.12 0.42 0.58 5.4* 0.80 6.5 
(0.6) (0.61) (0.57) 

-3.3 -6.5 5.8 2.83* 0.71 476. 
(7.6) (7.5) (6.9) 

137.5 5.07 -40.4 2.2** 0.84 9,578. 
(27.9) (32.9) (3b.0) 

-5.6 4.3 6.4 0.40 0.6 609. 
(7.66) (6.7) (6.6) 

16.9 7.7 10.5 1.36 0.82 1,882. 
(11.6) (12.2) (11.3) 

-4.9 1.82 3.5 0.65 0.64 592.7 
(6.05) (5.8) (5.8) 

-0.09 -0.05 -0.17 1.17 0.90 0.25 
(0.12) (0.13) (0.12) 

-4.6 6.47 3.77 0.70 0.65 588,8 
(5.8) (5.87) (5.8) 

• 2.71 9.63 3.76 1.39 0.80 1.245, 
(8.61) (8.73) (8.4) 

-0.62 -0.38 -0.42 2.46* 0.78 9,86 
(0.77) (0.8) (0.76) 

-0.09 0.05 -0.02 2.32* 0.86 0.03 
(0.04) (0.04) (0.04) 

0.76 0.42 -1.39 1.51 0.76 10.8 
(1.11) (1.17) (1.1) 
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Table B.4 - continued 

4 6 
Model: Y(t) = G + 2 a(s)Y(t-s) + E 3(k)X(t-k) + y.Fall + y.Wint + 

s=l k=l 

YgSpri + 

Y X C 
(s -e) 

ot(l) a(2) 0(3) a(4) 

SBX PO -7.7 0.07 -0.09 -0.25 0.37 
(3.3) (0.13) (0.15) (0.15) (0.15) 

PO HPAU 0.15 0.84 0.09 -0.007 -0.03 
(0.45) (0.14) (0.18) (O.o9) (0.15) 

HPAU PO -0.08 0.69 -0.13 0.18 0.02 
(0.08) (0.14) (0.16) (0.16) (0.13) 

PO COOP 0.04 0.78 -0.14 -0.22 0.55 
(0.39) (0.17) (0.2) (0.2) (0.2) 

COOP PO 0.15 0.08 0.44 0.02 -0.58 
(0.33) (0.18). (0.17) (0.18) (0.17) 

PO SOH 0.002 0.89 0.2 -0.26 -0.03 
(0.42) (0.14) (0.19) (0.19) (0.15) 

SOH PO -14.6 0.99 -0.11 -0.11 -0.002 
(12.8) (0.14) (0.2) (0.2) (0.13) 

PO SMH -0.09 0.79 0.07 -0.04 -0.04 • 
(0.48) (0.14) (0.19) (0.09) (0.16) 

SMH PO 10.3 0.89 -0.36 0.23 -0.24 
(5.9) (0.14) (0.19) (0.19) (0.14) 

PO TB -1.2 0.68 0.11 -0.03 0.01 
(1.8) (0.14) (0.17) (0.18) (0.14) 

TB PO 0.5 1.3 -0.54 0.44 -0.30 
(0.28) (0.14) (0.2) (0.2) (0.14) 

PO FIMP -0.22 0.4 0.07 -0.29 0.18 
(0.36) (0.17) (0.2) (0.2) (0.14) 

F IMP PO -1.76 1.19 -0.53 0.55 -0.42 
(4.51) (0.17) (0.25) (0.25) • (0.19) 
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B(l) 3(2) 8(3) 6(4) 9(5) 5(6) 

-0.14 
(0.83) 

1.22 
(0.78) 

-0.005 
(0.02) 

0 .02  
(0.21) 

0.73 
(0.16) 

0.01 
(0.004) 

-3.73 
(4.3) 

0.02 
(0.01) 

6.07 
(1.75) 

0.91 
(0.94) 

-0.002 
(0.02) 

0.01 
(0.01) 

-3.77 
(2.14) 

0.34 
(1.05) 

-0.43 
(0.95) 

-0.03 
(0.03) 

0.57 
(0.2) 

-0.34 
(0.18) 

-0.01 
(0.006) 

-0.23 
(5.6) 

-0.01 
(0 .02)  

-0.89 
( 2 . 2 )  

-0.14 
(1.49) 

-0.05 
(0.03) 

0 .002  
(0 .02)  

4.4 
(2.5) 

-1.59 
(1.05) 

0.77 
(0.93) 

0.007 
(0.03) 

-0.16 
( 0 . 2 )  

-0.04 
(0.19) 

0.0002 
(0.007) 

-4.2 
(5.3) 

-0.001 
(0 .02)  

-0.55 
( 2 . 2 )  

0.32 
(1.49) 

0.05 
(0.03) 

0.03 
(0.02) 

04.5 
(2.5) 

0 . 2 8  
(1.05) 

-0.61 
(0.93) 

-0.01 
(0.03) 

-0.61 
(0.2) 

0.27 
(0.18) 

0.01 
(0.007) 

6.7 
(5.3) 

-0.01 
(0 .02)  

-0.86 
( 2 . 2 )  

0.29 
(1.48) 

-0.01 
(0.03) 

0.001 
(0.01) 

3.5 
(2.3) 

0.4 
(1.05) 

0 . 2 8  
(0.91) 

-0.006 
(0.03) 

-0.11 
(0.2) 

0.04 
(0.17) 

-0.01 
(0.007) 

-4.06 
(5.6) 

0.01 
(0 .02 )  

-0.96 
(2.3) 

-0.4 
(1.42) 

0 .02  
(0.03) 

-0.01 
(0.01) 

00.3 
(2.04) 

- 0 . 2 2  
(0.85) 

-0.43 
(0.72) 

0.018 
(0.03) 

-0.01 
(0.15) 

0.11 
(0.14) 

0.005 
(0.005) 

7.84 
(5.02) 

-0.003 
(0.01) 

4.06 
(1.9) 

-0.79 
(0.88) 

-0.02 
(0.02) 

0.03 
(0.01) 

0.15 
(1.69) 
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Table B.4 - continued 

5 5 
Model: Y(t) = C + Z a(s)Y(t-s) + Z 3(k)X(t-k) + Y^Fall 4- YoWint + 

s=l k=l 

YgSpri + ê  

Fall Wint Spri 
6̂,50 

MSE 

12.3 2.26 1.45 1.05 0.57 350.1 
(6.01) (6.12) (6.17) 

-0.56 -2.75 0.34 0.79 0.74 11.6 
(3.65) (4.05) (3.7) 

2.93 -0.79 -2.67 1.44 0.94 0.38 
(0.56) (0.64) (0.57) 

-1.39 -0.04 0.95 2.96* 0.79 9.4 
(0.7) (0.7) (0.7) 

-1.69 0.22 1.31 5.03* 0.80 6.69 
(0.62) (0.62) (0.62) 

-0.07 -1.74 0.15 1.82 0.77 10.5 
(1.24) (1.13) (1.09) 

113.4 15.76 -19.8 2.34* 0.84 9,454. 
(28.3) (30.9) (31.1) 

0.19 -0.3 -0.26 0.73 0.74 11.7 
(1.06) (0.94) (0.92) 

14.8 4.7 14.57 2.88* 0.84 1,627. 
(10.7) (10.9) (10.7) 

-0.87 -0.13 0.15 1.4 0.76 10.9 
(0.8) (0.8) (0.8) 

-0.11 -0.06 -0.17 1.25 0.9 0.25 
(0.12) (0.12) (0.12) 

-0.56 -0.29 0.28 5.37* 0.83 7.76 
(0.64) (0.67) (0.66) 

8.2 -0.17 2.23 1.33 0.80 1,254. 
(8.3) (8.5) (8.5) 
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Table B.4 - continued 

4 6 
Model: Y(t) = C + S a(s)Y(t-s) + Z 3(k)X(t-k) + YnFall + Y,Wint + 

s=l k=l 

YgSpri + ê  

C a(l) a(2) a(3) a(4) 
(s-e) 

SOH A -11.19 0.83 -0.27 0.14 -0.14 
(11.05) (0.14) (0.18) (0.17) (0.13) 

A SOX -0.28 -0.17 -0.17 -0.17 0.86 

SBHF SOX -11.8 -0.07 -0.15 -0.17 0.81 
(10.9) (0.08) (0.08) (0.08) (0.09) 

SOX SBHF -5.9 0.83 -0.22 0.11 -0.04 

se SOX -2.7 0.76 -0.44 -0.0009 0.14 
(2.05) (0.14) (0.17) (0.17) (0.15) 

SOX se -4.6 0.71 -0.18 0.15 -0.04 
(11.1) (0.14) (0.17) (0,17) (0.14) 

SOX • PS -10.67 0.81 -0.33 0.23 -0.05 
(10.6) (0.13) (0.17) (0.17) (0.13) 

PS SOX -0.1 0.81 -0.19 0.04 0.08 
(0.11) (0.14) (0.18) (0.18) (0.14) 

SOX PM -9.58 0.76 -0.29 0.27 -0.06 
(10.2) (0.13) (0.16) (0.16) (0.13) 

PM SOX -2.53 0.94 -0.23 -0.02 -0.04 
(3.3) (0.14) (0.19) (0.19) (0.14) 

SOX PO -9.5 0.73 -0.3 0.19 0.05 
(10.3) (0.14) (0.17) (0.16) (0.13) 

PO SOX -0.21 0.80 0.17 -0.12 -0.06 
(0.45) (0.14) (0.18) (0.18) (0.14) 
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3(1) 3(2) 3(3) 3(4) 3(5) 3(6) 

-0.65 
(5.6) 

0.001 

-0.16 
(0.13) 

0 . 0 6  

-0.005 
(0.03) 

1.77 
(0.75) 

-11.56 
(12.9) 

0.0004 
(0.0015) 

-0.18 
(0.43) 

0.001 
.(0.04) 

2.25 
(3.38) 

-0.004 
(0.006) 

-4.8 
(5.6) 

0.0002 

0.05 
(0.17) 

0.13 

0.005 
(0.03) 

-1.05 
(0.94) 

2.21 
(16.72) 

-0.0004 
(0.0018) 

-0.45 
(0.59) 

-0.03 
(0.05) 

0.84 
(4.06) 

-0.0002 
(0.007) 

-1.09 
(2.9) 

-0.0005 

- 0 . 1  
(0.16) 

-0.13 

0.0003 
(0.03) 

-0.05 
(0.98) 

14.35 
(16.87) 

-0.0008 
(0.0018) 

0.71 
(0.59) 

-0.005 
(0.05) 

-1.19 
(4.06) 

-0.009 
(0.007) 

-0.44 
(2.96) 

0.007 

0.05 
(0.16) 

0.04 

0.01 
(0.03) 

0.45 
(0.99) 

-5.49 
(17.07) 

-0.0002 
(0.0018) 

0.13 
(0.60) 

0 . 0 2  
(0.05) 

-5.02 
(4.08) 

-0.001 
(0.007) 

-1.65 
(5.68) 

-0.003 

0.06  
(0.16) 

0 . 0 2  

-0.05 
(0.03) 

0.34 
(1.14) 

6.76 
(17.04) 

0.0009 
(0.0018) 

0.57 
(0.68) 

-0.008 
(0.05) 

-0.64 
(4.26) 

0.004 
(0.007) 

3.19 
(5.70) 

0.0006 

0.12 
(0.13) 

-0.04 

0.05 
(0.02) 

-0.83 
(0.89) 

-15.3 
(14.22) 

-0.001 
(0.001) 

-0.9 
(0.54) 

-0.003 
(0.04) 

1.56 
(3.65) 

-0.003 
(0.006) 
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Table B.4 - continued 

Model: Y(t) = C + Z a(s)Y(t-s) + Z 6(k)X(t-k) + Ŷ Fall + YgWlnC + 
s=l k=l 

YgSpri + ê . 

Fall Wint Spri F, .. MSE 
6,50 

1.8 0.57 5,667 

1.05 0.99 3.25 

1.35 0.83 5,043. 

1.67 0.56 5,739 

1.12 0.44 198. 

1.46 0.5 5,858. 

0.58 0.51 6,408.7 

0.43 0.57 0.72 

1.39 0.55 5,894.5 

0,19 0.61 612.64 

0.96 0.53 6,158. 

0.97 0.73 11.33 
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Table B.5. Autoregressive model of the detrend futures prices of PS, PO 
and PM 

6 3 
Model: Y(t) = C + E a(s)Y(t-s) + Z y.D + e , 

s=l 1=1 ̂  t 

D̂ '̂s are seasonal dummy variables 

C a(l) a(2) a(3) a(4) a(5) a(6) 

PSFj. -0.03 
(0.06) 

0.82 
(0.07)3 

PSFj. -0.03 
(0.07) 

0.88 
(0.13) 

-0.07 
(0.13) 

PSFt -0.03 
(0.07) 

0.89 
(0.13) 

-0.16 
(0.17) 

0.10 
(0.13) 

PSF̂  -0.03 
(0.07) 

0.89 
(0.13) 

-0.16 
(0.18) 

0.10 
(0.18) 

-0.001 
(0.13) 

PSFj. -0.03 
(0.07) 

0.81 
(0.09) 

0.004 
(0.14) 

0.02 
(0.13) 

PSFj. -0.03 
(0.07) 

0.88 
(0.13) 

-0.10 
(0.15) 

0.03 
(0.15) 

0.19 
(0.18) 

POF̂  -0.13 
(0.35) 

0.82 
(0.07) 

PCF J. -0.16 
(0.34) 

1.04 
(0.13) 

-0.27 
(0.12) 

POF̂  -0.14 
(0.33) 

1.11 
(0.13) 

-0.54 
(0.18) 

0.25 
(0.13) 

PCF J. -0.13 
(0.32) 

1.19 
(0.13) 

-0.7 
(0.19) 

0.60 
(0.19) 

-0.13 
(0.13) 

N̂umber in parentheses is the standard deviation. 

* 
Significant difference from zero at a = 0.01. 
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Yl Y?. Y3 MSE 
4̂,57 

-0.06 -0.16 -0.03 0.30 0.69 32.38* 
(0.12) (0.12) (0.12) 

-0.07 -0.15 -0.02 0.31 0.69 25.6* 
(0.12) (0.12) (0.12) 

-0.07 -0.12 -0.03 0.31 0.69 21.32* 
(0.12) (0.12) (0.12) 

-0.07 -0.12 -0.03 0.31 0.69 17.95* 
(0.12) (0.12) (0.12) 

-0.06 -0.16 -0.03 0.31 0.68 20.90* 
(0.12) (0.12) (0.12) 

-0.15 -0.13 0.02 0.31 0.70 16.14* 
(0.13) (0.12) (0.13) 

0.63 -0.93 -0.30 7.78 0.68 30.9* 
(0.6) (0.6) (0.6) 

0.47 -1.06 -0.03 7.3 0.7 27.15* 
(0.6) (0.6) (0.6) 

0.37 -0.94 0.17 6.98 0.72 24.5* 
(0.57) (0.58) (0.6) 

0.61 -0.86 0.09 6.42 0.75 23.66* 
(0.56) (0.55) (0.57) 
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Table B.5 - continued 

Model: Y(t) = C 
6 

+ E a(s)Y(t-s) + 
S=1 

D̂ '̂s are seasonal dummy variables 

C ad) a(2) a(3) a(4) a(5) a(6) 

POFt -0.15 
(0.35) 

0.84 
(0.08) 

0.05 
(0.14) 

-0.14 
(0.13) 

POF -0.15 
(0.35) 

1.03 
(0.13) 

-0.26 
(0.14) 

0.12 
(0.15) 

-0.21 
(0.19) 

0.08 
(0.14) 

PMF —0.88 
(1.86) 

0.79 
(0.07) 

PMF -0.88 
(1.88) 

0.79 
(0.13) 

-0.004 
(0.13) 

PMF -0.91 
(1.86) 

0.79 
(0.13) 

0.15 
(0.17) 

-0.19 
(0.13) 

PMF -0.92 
(1.87) 

0.79 
(0.13) 

0.16 
(0.17) 

-0.16 . 
(0.17) 

-0.03 
(0.13) 

PMF -0.92 
(1.88) 

0.83 
(0.08) 

-0.14 
(0.14) 

0.06 
(0.13) 

PMF̂  -0.89 
(1.9) 

0.77 
(0.14) 

0.10 
(0.16) 

-0.18 
(0.16) 

0.06 
(0.17) 

0.01 
(0.14) 
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Yl Y2 y3 MSE 
4̂.57 

0.59 -0.81 -0.29 7.79 0.68 20.90* 
(0.61) (0.63) (0.6) 

0.44 -0.85 -0.09 7.56 0.71 16.63* 
(0.62) (0.63) (0.63) 

-2.65 -2.16 -2.22 219.4 0.63 25.67* 
(3.2) (3.2) (3.2) 

-2.68 -2.15 -2.21 223.17 0.63 20.19* 
(3.38) (3.27) (3.24) 

-2.32 -3.55 -1.51 218.7 0.65 17.53* 
(3.36) (3.37) (3.25) 

-2.19 -3.52 -1.77 222.38 0.65 14.79* 
(3.43) (3.41) (3.44) 

-2.91 -2.46 -2.6 222.6 0.64 17.06 
(3.28) (3.25) (3.25) 

-2.15 -2.98 -2.98 229.09 0.64 12.48 
(3.78) (3.45) (3.39) 
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APPENDIX C. SEASONAL TIME SERIES* 

The explanation in this appendix is based upon McCleary and Hay, 

1980. 

Seasonality is a periodic movement of a time series that repeats 

itself at the same period. For quarterly time series such as in this 

research, seasonal pattern tends to repeat itself in every quarter of the 

crop year. It is debatable whether one should deseasonalize a time 

series. Nerlove (1964) suggestes that modelling seasonality according to 

causal behavior is the best way to handle seasonality. This view is also 

shared by Granger (1978), 

Most of the agriculture product time series exhibit seasonal 

nonstationarity, that is the time series drift over time. For this type 

of series, one may take seasonal difference, for example: 

(1 - B̂ )Ŷ  = ê , 

where = Ŷ _̂  ; or we can write: 

- ?t_4 " Gt 

However, for the stationary case, the coefficient of Ŷ _̂  is less than 

one as in the following: 

(1 - e/)Ŷ  . 

For higher-order seasonal patterns, we may have: 

''t - «4?t-4 - «8?c-8 • "t " 

(1 - e/ -63B®)Ŷ  -
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Such higher order, however, is rare. In case of multiplicative 

seasonality, a time series may.exhibit the following: 

(1 - (f)̂ B)(l - = ê  or 

(1 - + *i*4B5)Ŷ  = ê  

We can write as: 

t̂ = *l?t-l + Û t-4 - *1*4̂ -5 + ̂  

The interact termijî ^̂  ̂makes the analysis more complicated. For 

stationary time series, we require 

-1 < and (() ̂  < +1 

Given the first-order of seasonal autoregresslve: 

(1 - *iB)(l - <|.̂ B̂ )Ŷ  = ê  

If the inverse of (1 - ̂ B̂) and (1 - #̂ B̂ ) exist, we can write them 

Ŷ  = (1 - (j)̂ B)'̂ (l - (|)̂ B̂ )"̂ ê  or 

= (1 + *̂ B + *̂ B̂  + + ... ((i"B") 

* (1 + * + (|)̂ B® + (|)̂ B̂  ̂+ ... .. .)ê  

The product of this series will converge if and (|) ̂  satisfy the 

stationary condition. 
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APPENDIX D. DEFINITION OF VARIABLES 
(capital letters refer to aggregate notations while small letter cases 

reserved for an agent notations) 

Notations 

A. 

3̂ 

COOP 

CORPF 

CRNO 

FIMP 

HPAU 

"t 

PŜ  

PM̂  

POt 

SBt 

SBBj. 

SBCt 

SBCM. 

Description 

Total U.S. soybean acreage planted at time t 

Cost of production of soybean 

Adjustment cost of soybean acreage planted 
to soybeans 

Farm cost of holding inventories 

U.S. cotton seed oil, crude, tank cars, f.o.b. 

U.S. com price received by farmers 

U.S. corn oil wholesale price 

Average wholesale price, Peruvian, imported 

U.S. quarterly high protein animal unit 
(computed) 

U.S. soybean price received by farmers 

U.S. wholesale price of soybeans (Decatur) 

U.S. wholesale price of soybean meal, 
44 percent protein, Decatur 

U.S. wholesale price of soybean oil, crude, 
Decatur 

U.S. soybean production 

U.S. soybeans bought 

U.S. soybean commercial stocks 

U.S. soybean crushing margin 
PM 

(SBCM = SOMSC * + SOOSC * PO - PS) 

Units 

mil. acres 

dollars 

dollars 

dollars 

f/lb. 

$/bu. 

<?/lb. 

$/ton 

1000 units 

$/bu. 

$/bu. 

$/s.ton 

f/lb. 

mil. bu. 

mil. bu. 

mil. bu. 

$/bu. 

SBD. U.S. total demand for soybeans mil. bu. 
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SBHCj. U.S. soybean stocks owned by Commodity Audit 
Cooperation 

mil. bu. 

SBHF̂  U.S. soybean stocks on farms mil. bu. 

SBSj. U.S. soybeans sold by farmers mil. bu. 

SBXj. U.S. soybean exports mil. bu. 

SĈ  quantity of soybeans crushed at mills mil. bu. 

SM̂  soybean meal production 1000 s. ton 

SMDM̂  U.S. total demand for soybean meal 1000 s. ton 

SMHj. U.S. total soybean meal stocks 1000 s. ton 

SMXt U.S. total soybean meal exports 1000 s. ton 

SOt U.S. soybean oil production mil. lb. 

SOMSCj. Soybean meal crushing yield 
(SOMSC = (0.02*SM)/SC) 

cwt. per bu. 

SODM̂  U.S. total soybean demand mil. lb. 

SOHt Soybean oil commercial stocks mil. lb. 

SOHĈ  Soybean oil stocks owned by CGC rail. lb. 

SOOSCj. soybean oil crushing yield 
(soosc = (o.oi*so)/sc) 

cwt. per bu. 

SOXt U.S. total soybean oil commercial exports rail. lb. 

TB U.S. 90 days Treasury bill rates % 
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